UNCLASSIFIED
SCA version 2.2.2 FINAL /15 May 2006

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

APPENDIX D: DOMAIN PROFILE

FINAL / 15 May 2006
Version 2.2.2

Prepared by:

JTRS Standards
Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)
Space and Naval Warfare Systems Center San Diego
53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL /15 May 2006

REVISION SUMMARY
Version Revision
1.0 release for prototype implementation and validation
correction of XML syntax errors; deleted deploymentattributedefinition element
(D.4.2), which was redundant with simple (with the addition of action element to
simple) and more in line with the CORBA components spec.; deleted
deploymentattribute (D.4.3) for same reason; changed deploymentattributedef element
to propertyref (D.2.1.8.10.1) for consistency with those changes; changed "access" to
1.0.1 | "jo" to be consistent with SCAS terminology; added softpkgrefid attribute to SPD and
SAD to allow profile to refer to a file already loaded in radio; clarified the initial
implied value of the enumeration element (D.4.1.1.6); corrected and clarified
description of ports element in D.5.1.4.2.
Added section D.7 and Attachment 1 for complete DTDs.
11 Incorporate approved Change Proposals, numbers 162, 163, 164, 165, 166, 167, 168,
' 169, 170, 171, 172, 173, 174, 176, 202, 203, 212, 214, 216.
2.0 Incorporate approved Change Proposals, numbers 152, 270, 281, 308, 309, 318, 321.
21 Incorporate approved Change Proposals, numbers 88, 183, 306, 355, 384, 468 also
' complete some changes from CP 88, 142, 318, 473, 477 not incorporated in v2.0.
2.2 Incorporate approved Change Proposals, numbers 388, 415, 486, 495, 499, 512
2.2.1 | Incorporate approved Change Proposals, SCA-CCM numbers 3, 73, 106, 80
2.2.2 Incorporate Change Proposals 85, 97, 124, 182, 194, 234, 284, 323

SCA version 2.2.2 FINAL /15 May 2006

TABLE OF CONTENTS
APPENDIX D. DOMAIN PROFILEcoiiiiiictseee et D-1
D.1 DePlOoYMENT OVEIVIEWooviiiitiriiiiieiieieie sttt st bbbttt b e bbb be s s e D-1
D.2 Software Package DESCIIPLONcuiiiiiie ettt be e D-4
D.2.1 SOftWare PACKAQE.......ciiiiiieiie ittt et D-4
5 2020 0 A 1)1 - PSPPSR D-5
D.2.1.2 AULNOT .t bbb bbb e D-5
D.2.1.3 dESCIIPLION .. .etiitiitietieiiei ettt ettt b ettt D-6
DB R o o] o =T 1 1Y 1 SRS D-6
D.2.1.4.1 10CAHTIE. ...ttt ns D-7
D200 T o (=T] o] (o] OSSR D-7
D.2.1.6 IMPIEMENTALION ..ottt bbb D-7
D.2.1.6.1 ProPertyfile.....ccuiiieiecie et D-8
D.2.1.6.2 ESCIIPLION.cuiiiiiiieiieieteete ettt sttt D-9
D.2.1.6.3 COUB ...ttt ettt bbbttt ettt bt bbb D-9
D.2.1.6.4 COMPIIEE ...ttt D-10
D.2.1.6.5 programminglangUAagE..........ccueieeueiieiieeiieseesieesieseesre e e sre e sraesaeesee e e D-10
D.2.1.6.6 NUMANIANGUAGEcouiiiiiiiiite et D-11
D 200 T A o OSSR D-11
D.2.1.6.8 PrOCESSOI ...ttt bbbttt D-11
D.2.1.6.9 dEPENUENCYecvieieeiecie ettt ettt e e see e e sre e e D-11
D.2.1.6.10 FUNTIME ...oouiiiiiiiieeie ettt e st se e s e teeneesneeeeeneesreenee e D-13
D.2. 1.7 USESUBVICE ...eeveieitieieetietie ettt sttt b et b et s e st e et st nbe sttt beeneene e D-13
D.2.1.7.1 PrOPEITYIET ..ot b bbbt D-13
D.3 DeVice Package DESCIIPIONc.iiiiiiieitisieiiieiieie ettt bttt D-14
D.3.1 DEVICE PACKAGEciueiieiiieiiiieterte ettt bbbt D-14
D 0 1 O 1 =SSOSR PRSP D-15
920 00 1 o PRSP D-15
D20 00 G T o (=Y Tox] o] [o PSSR D-15

SCA version 2.2.2 FINAL /15 May 2006

D.3.1.4 NWOEVICEIEQISIIAtIONeviiiieiieitee ettt sttt nb e D-15
D.3.1.4.1 ProPertyfile ... oo D-16
D.3.1.4.2 dESCIIPION.....eiiiiiiteeteiie sttt sttt sttt ettt sbe et e sreesre e e D-17
D.3.1.4.3 MANUFBCTUIEEiiiiiiieiieie ettt bbb D-17
D.3.1.4.4 MOUEINUMDETciiiieiiiie et sre e D-17
D.3.1.4.5 UEVICECIASSoiviiiiiiieiieieie ettt bbbt D-17
D.3.1.4.6 ChIlANWABVICEueiieieieciiee et D-17
D.3.1.4.7 hwdeViCeregiStratiOncccceeiierieiieie ettt D-18
D.3.1.4.8 deVICEPKGIETeeieiiieciieee e D-18

D.4 Properties DESCIIPTONc.ciiiiiiiieie ettt b bbbt D-19
D o1 o] o[]S TSSOSO TP UPURPROPPP D-19

D 2t T 0 o -SSR D-19
D.4. 1. 1.1 dESCIIPLION.iitiiiiiiieiietet ettt e bbbt ene e D-20
D41 1.2 VAIUB ...ttt D-21
D 2R O G T U 1 (PSSP D-21
DR O = 3T [TP POU P OPR D-21
D.4.1.1.5 ENUMETATIONSviitieiieiiieiiieieeiee ettt sttt e sbe st e teeseesneeeeereesreenee e D-21
D I T T (1o SO D-21
I3 2t = Vo 1 [o TP D-22

D.4.1.2 SIMPIESEUENCE ...c.veeueeeeieitieie ettt ettt s e te e teete e st e saaeteeneenreenee e D-23

D R [TPV OPRUUPTOPRPRTOR D-24
D.4.1.3.1 INPUIVAIUE.......oceiiieciece ettt re e D-24
D.4.1.3.2 TESUIVAIUB ...t D-25

D4 14 SHUCT......eeeei ettt b e et e e e b e e nneenre e D-25
D.4.1.4.1 configurationKindccooiiiiiiiiiiecee e D-26

D20 I T 1 U T 7= [U= Lo PSPPSR D-26

D.5 Software CompoNent DESCHIPTONccoiiiiiieieieie ettt D-28
D.5.1 SOftWAIrECOMPONENTeiiiiiiiiieieie ittt bbb D-28

D.5.1.1 COMDAVEISIONcuiiiiieieiie sttt ettt sttt et reenbe et D-29

D.5.1.2 COMPONENTIEPIU. ... ciueiiiiiiiieierie sttt bbbttt sttt D-29

D.5.1.3 COMPONENTIYPEiiiieiiii ettt st e et e et e e srae e e enseeeanseeennes D-29

D.5.1.4 COMPONENITIRALUIESecveeivieieeiic ettt e e te e nreenee e D-29

SCA version 2.2.2 FINAL /15 May 2006

D.5.1.4.1 SUPPOITSINEEITACE.iiiiiieieiiiiie ettt D-30
DR TN R S o To] o £ T PSP P PP D-30
D.5.1.5 INEITACESeeeeieiee ettt bttt ettt sbe et neenbe et D-31
D.5.1.6 PrOPEITYTIlE...c.ei et D-31
D.6 Software AsSemMBDIY DESCHIPTON........c.iiieiiiieiie st re e D-33
D.6.1 SOTtWAreaSSEMBIYeciieiieiieie et re e D-33
D.B.1. 1 dESCIIPLION....ctitiiiieieeie ettt bbbttt bbbt D-34
D.6.1.2 COMPONENLIIIEScveeieiiecie e D-34
D.6.1.2.1 COMPONENEIIIEcuiiiiiiiec e D-34

D 2T G T o= 1 o 1o SRS D-34
D.6.1.3.1 cOMPONENEPIACEMENT.c..iiiiitiiiriiiiieiiee e D-35
D.6.1.3.2 cOMPONENtfilEref........ocieiieice e D-35
D.6.1.3.3 cOMPONENEINSTANTIALIONoveviiiiiieiieie e D-36
D.6.1.3.4 NOStCOIHOCALIONcvviviiiiiie e D-39
D.6.1.4 asSemMBIYCONIOIETc..oviiiiiie e D-40
D.6.1.5 CONMNEBCHIONS ..c.viviiiiiieiieiieie ettt bbbttt bbb bbb eene e ens D-40
D.6.1.5.1 CONNECHINIEITACEeouviiiieieieie ettt D-40
D.6.1.6 EXIEMNAIPOITS. .. .cviiiieiece ettt nta et nre e D-46
D.7 Device Configuration DESCIIPIONvciuiiiiiieiece ettt D-48
D.7.1 deviCeCoNfIQUIALION.ccvi ittt ae e re e e D-48
D.7. 1.1 dESCIIPLION....ctitiitieieeieeee et bbbttt bbbt D-49
D.7.1.2 devicemanagerSOftPKQcovviiiiieiece e D-49
D.7.1.3 COMPONENTIIIES ..o D-49

D 0 S o=) o 1o PSR D-49
D.7.1.4.1 compPONENtPIACEMENT........oiviiiiiiiiiiiieiie et D-49
D.7.1.5 CONMNEBCHIONS ..c.viiiitieieeiietieie ettt sttt bbbt e et e bbbt st eebeeneene e D-53
D.7.1.6 dOMAINMANAGETttt eitie ittt e a e te e b e e b e e s b e e s teesnseesreeanbeenrees D-53
D.7.1.7 TIlESYSIEMNAIMIESueiiiiiiiieterie sttt bbbt D-53
D.8 DomainManager Configuration DeSCrIPLOrccooeiiiiiiiinisieeeie e D-54
D.8.1 domainmanagerCoONfIgUIatiON...........cceiiiiiiiieieieie et D-54
D28 0 00 A o[- Yo o o USSP USRS D-55
D.8.1.2 domainmanagerSOfPKGccviieiiereiiese et D-55

SCA version 2.2.2

D.8.1.3 Services........cc.ceuun
D.9 Profile Descriptor................
D.10 Document Type Definitions

FINAL / 15 May 2006

D-vi

SCA version 2.2.2

FINAL / 15 May 2006

LIST OF FIGURES
Figure D-1. Relationships Between Domain Profile XML File TYPesccoccvvveviiiiieiiieninnns D-2
Figure D-2. softpkg Element RelationShipsccoiiiiiiiiiiiiec s D-4
Figure D-3: author Element RelationShips........ccoiiiiiiiiiciic st D-6
Figure D-4. implementation Element Relationships..........cccceiiiiiiiiiiienccee D-8
Figure D-5. code Element RelationShipsccviiieiiiiiiiiic i D-10
Figure D-6. dependency Element RelationsShips..........ccocoiiiiiiiiniiiieee e D-12
Figure D-7. softpkgref Element RelationShips..........ccoiiviiiiiic i D-12
Figure D-8. devicepkg Element RelationsShips...........cccooiiiiiiiiiiiiieeee e D-14
Figure D-9. hwdeviceregistration Element Relationships..........cccccovviieiicie i D-16
Figure D-10. childhwdevice Element Relationships..........cccooeiiiininiiiiiscececc e D-18
Figure D-11. properties Element Relationshipsccccovevviiiiiiieiicie s D-19
Figure D-12. simple Element RelationShipscccoiiiiiiiiiiieee e D-20
Figure D-13. simplesequence Element Relationships.........cccoovvieiieie i D-23
Figure D-14. test Element RelationShipsooiiiiiiiiiiiiieecece e D-24
Figure D-15. struct Element RelationShips...........ccoviiiiiiiiiccie e D-25
Figure D-16. structsequence Element Relationships.........ccccooeiiiiniiiiiiinieeee e D-27
Figure D-17. softwarecomponent Element Relationshipscccocveveiieiicie i D-28
Figure D-18. componentfeatures Element Relationships ... D-29
Figure D-19. ports Element RelationShips........ccoveiiiiiiicie e D-30
Figure D-20. softwareassembly Element Relationships ... D-33
Figure D-21. partitioning Element RelationShips...........ccovviiiiiieiicic e D-35
Figure D-22. componentplacement Element Relationships. ... D-35
Figure D-23. componentinstantiation Element Relationships...........c.ccccevvveveiiieiicvecieseens D-37
Figure D-24. componentproperties Element Relationships..........c.ccooiiiiiiiiiiiiiice D-37
Figure D-25. findcomponent Element Relationships...........ccoceiveiieiiiieieccc e D-38
Figure D-26. resourcefactoryproperties Element Relationships...........ccccovviiiieiiicicinnens D-38
Figure D-27. connectinterface Element Relationships...........cccccevviiiiiiicie e D-40
Figure D-28. usesport Element Relationships ... D-41
Figure D-29. findby Element RelationShips.........ccciviiiiiiieiecie e D-42

SCA version 2.2.2 FINAL /15 May 2006

Figure D-30.
Figure D-31.
Figure D-32.
Figure D-33.
Figure D-34.
Figure D-35.
Figure D-36.
Figure D-37.
Figure D-38.
Figure D-39.

providesport Element Relationshipscccccooeiiiiiiiniiee e D-44
componentsupportedinterface Element Relationships...........cccccevvivevivenieninne, D-45
port Element RelationShipsooviiiiiiiieee e D-46
deviceconfiguration Element Relationships...........cccocevveveiieieeie e D-48
componentplacement Element Relationships...........cccooviiiininieieicnccce D-50
componentinstantiation Element Relationships..........ccccccoovviieiiciiic e, D-51
componentproperties Element Relationships...........ccocoviiiiiieieicicncce D-52
domainmanager Element Relationships...........cccooveviiieiieie i D-53
domainmanagerconfiguration Element Relationships............ccccooviinnnnnnn D-54
service Element Relationshipsccvieiieiiii e D-55

D-viii

SCA version 2.2.2 FINAL /15 May 2006

APPENDIX D. DOMAIN PROFILE

The Software Communications Architecture (SCA) specification provides architectural
specifications for the deployment of communications software into a Software Definable Radio
(SDR) device. The intent of the SDR device is to provide a re-configurable platform, which can
host software components written by various vendors to support user functional services. The
SCA specification requires portable software components to provide common information called
a domain profile. The intent of this appendix is to clearly define to the component developers
the requirements of information and format for the delivery of this information. The domain
management functions use the component deployment information expressed in the Domain
Profile. The information is used to start, initialize, and maintain the applications that are
installed into the SCA-compliant system.

This appendix has been designed to follow the philosophy of the CORBA Components
Specification (OMG version 3.0, formal/02-06-65: Chapter 6 - Packaging and Deployment).
Due to the differences between the SCA Core Framework IDL and the CORBA Components
Specification IDL, it was necessary to modify some of the deployment principles for use in the
SCA. This specification defines the XML Document Type Definition (DTD) set for use in
deploying SCA components. The complete DTD set is contained in Attachment 1 to this
Appendix.

D.1 DEPLOYMENT OVERVIEW

The hardware devices and software components that make up an SCA system domain are
described by a set of XML descriptor files that are collectively referred to as a Domain Profile.
A Software Profile is the complete set of XML files needed to describe a particular software
component — the composition depending on the type of component being described. These
descriptor files describe the identity, capabilities, properties, and inter-dependencies of the
hardware devices and software components that make up the system. All of the descriptive data
about a system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’s CORBA Components
specification (orbos/99-07-01).

Figure D-1 depicts the relationships between the descriptor files that are used to describe a
system's hardware and software assets. The XML vocabulary within each of these files describes
a distinct aspect of the hardware and software assets.

Within the Domain Profile, all CORBA software elements of the system are described by a
Software Package Descriptor (SPD) and a Software Component Descriptor (SCD) file.

The software profile for an application consists of one SAD file that references (directly or
indirectly) one or more SPD, SCD, and properties (PRF) files. An SPD file contains the details
of an application’s software module that must be loaded and executed..

The SPD provides identification of the software (title, author, etc.) as well as the name of the
code file (executable, library or driver), implementation details (language, OS, etc.),
configuration and initialization properties (contained in a Properties File), dependencies to other
SPDs and devices, and a reference to a Software Component Descriptor. The SPD also specifies

D-1

SCA version 2.2.2 FINAL /15 May 2006

the Device implementation requirements for loading dependencies (processor kind, etc.) and
processing capacities (e.g., memory, process) for the application software module.

The Software Component Descriptor (SCD) defines the CORBA interfaces supported and used
by a specific component.

Domain Profile

0..n
1 0..n
«DTDElement» «DTDElement» «DTDElement»
Device Configuration Descriptor Domain Manager Configuration Descriptor Software Assembly Descriptor
1
0..n 1..n
«DTDElement»
«DTDElement» 1 Software Package Descriptor
Device Package Descriptor -Nn
«DTDElement»
Properties Descriptor
0.1
0.1 0..1
«DTDElement» «DTDElement»
Properties Descriptor Software Component Descriptor
0..1

«DTDElement»
Properties Descriptor

Figure D-1. Relationships Between Domain Profile XML File Types

Since applications are composed of multiple SW components a Software Assembly Descriptor
(SAD) file is defined to determine the composition and configuration of the application. The
SAD references all SPDs needed for this application, defines required connections between
application components (connection of provides and uses ports / interfaces), defines needed
connections to devices and services, provides additional information on how to locate the needed
devices and services, defines any co-location (deployment) dependencies, and identifies a single
component within the application as the assembly controller.

D-2

SCA version 2.2.2 FINAL /15 May 2006

Similar to the application SAD, a device manager has an associated Device Configuration
Descriptor (DCD) file. The DCD identifies all devices and services associated with this device
manager, by referencing the associated SPDs. The DCD also defines properties of the specific
device manager, enumerates the needed connections to services (file systems), and provides
additional information on how to locate the domain manager. In addition to an SPD, a device
may have a Device Package Descriptor (DPD) file which provides a description of the hardware
device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the domain manager is itself described by the DomainManager
Configuration Descriptor (DMD) which provides the location of the (SPD) file for the specific
DomainManager implementation to be loaded. It also specifies the connections to other software
components (services and devices) which are required by the domain manager.

SCA version 2.2.2 FINAL /15 May 2006

D.2 SOFTWARE PACKAGE DESCRIPTOR

The Software Package Descriptor is used at deployment time to load a component and its various
implementations. The information contained in the Software Package Descriptor will provide
the basis for the domain management function to manage the component within the SCA
architecture.

The software package descriptor may contain various implementations of any given component.
Within the specification of a software package descriptor several other files are referenced
including a component level propertyfile and a software component descriptor file. Within any
given implementation there may be additional propertyfiles.

D.2.1 Software Package

The softpkg element (Figure D-2) indicates a Software Package Descriptor (SPD) definition.
The softpkg id uniquely identifies the package and is a DCE UUID. The DCE UUID is as
defined by the DCE UUID standard (adopted by CORBA). The DCE UUID format starts with
the characters "DCE:" and is followed by the printable form of the UUID, a colon, and a decimal
minor version number, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". The
decimal minor version number is optional. The version attribute specifies the version of the
component. The name attribute is a user-friendly label for the softpkg element. The type
attribute indicates whether or not the component implementation is SCA compliant. All files
referenced by a Software Package are located in the same directory as the SPD file or a directory
that is relative to the directory where the SPD file is located.

Figure D-2. softpkg Element Relationships

The set of properties to be used for a Software Package come from the union of these properties
sources using the following precedence order:

SCA version 2.2.2 FINAL /15 May 2006

1. SPD Implementation Properties
2. SPD level properties
3. SCD properties

Any duplicate properties having the same ID are ignored. Duplicated properties must be the
same property type, only the value can be over-ridden. The implementation properties are only
used for the initial configuration and creation of a component by the CF ApplicationFactory and
cannot be referenced by a SAD componentinstantiation, componentproperties or
resourcefactoryproperties element.

<!ELEMENT softpkg
(title?
, author+
, description?
, propertyfile?
, descriptor?
, ilmplementation+
, usesdevice*

) >

<!ATTLIST softpkg

id ID #REQUIRED

name CDATA #REQUIRED

type (sca compliant | sca non compliant) "sca compliant"
version CDATA #IMPLIED >

D.2.1.1 title

The title element is used for indicating a title for the software component being installed in
accordance with the softpkg element.

<!ELEMENT title (#PCDATA)>
D.2.1.2 author

The author element (see Figure D-3) will be used to indicate the name of the person, the
company, and the web page of the developer producing the component being installed into the
system.

D-5

SCA version 2.2.2 FINAL /15 May 2006

<<DTDElement>>
author

<<DTDSequenceGroup>>
author_grp
(from author)
0..n 0.1 0.1
{1} @ {3
<<DTDElementPCDATA>> <<DTDElementPCDATA>> <<DTDElementPCDATA>>
name company webpage

Figure D-3: author Element Relationships

<!ELEMENT author

(name*

, company?

, webpage?
) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT company (#PCDATA) >
<!ELEMENT webpage (#PCDATA) >

D.2.1.3 description

The description element will be used to describe any pertinent information about the software
component being delivered to the system.

<!ELEMENT description (#PCDATA)>
D.2.1.4 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with the Software Package. The intent of the propertyfile will be to provide the
definition of properties elements common to all component implementations being deployed in
accordance with the Software Package (softpkg).Property Descriptor files may also contain
properties elements that are used in definition of command and control id value pairs used by the
SCA Resource configure() and query() interfaces. The format of the properties element is
described in the Properties Descriptor (Section D.4).

<!ELEMENT propertyfile

(localfile

) >

<!ATTLIST propertyfile

type CDATA #IMPLIED>

D-6

SCA version 2.2.2 FINAL /15 May 2006

D.2.1.4.1 localfile

The localfile element is used to reference a file in the same directory as the SPD file or a
directory that is relative to the directory where the SPD file is located. When the name attribute
is a simple name, the file exists in the same directory as the SPD file. A relative directory
indication begins either with “../”” meaning parent directory and ““./”” means current directory in
the name attribute. Multiple “../” and directory names can follow the initial “../” in the name
attribute. All name attributes must have a simple name at the end of the file name.

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.2.1.5 descriptor

The descriptor element points to the local filename of the Software Component Descriptor
(SCD) file used to document the interface information for the component being delivered to the
system. In the case of an SCA Component, the SCD will contain information about three aspects
of the component (the component type, message ports, and IDL interfaces). The SCD file is
optional, since some SCA components are non-CORBA components, like digital signal
processor (DSP) “c” code (see section on software component descriptor file, section D.5).

<!ELEMENT descriptor

(localfile
) >
<!ATTLIST descriptor
name CDATA #IMPLIED>

D.2.1.6 implementation

The implementation element (see Figure D-4) contains descriptive information about the
particular implementation template for a software component contained in the softpkg element.
The implementation element is intended to allow multiple component templates to be delivered
to the system in one Software Package. Each implementation element is intended to allow the
same component to support different types of processors, operating systems, etc. The
implementation element will also allow definition of implementation-dependent properties for
use in CF Device, CF Application, or CF Resource creation. The implementation element’s id
attribute uniquely identifies a specific implementation of the component and is a DCE UUID
value, as stated in section D.2.1. The compiler, programminglanguage, humanlanguage, os,
processor, and runtime elements are optional dependency elements.

D-7

SCA version 2.2.2 FINAL /15 May 2006

P —
o R WYY =
-
s Sam

b
e
— e - BT

" r—
eI REATL

Figure D-4. implementation Element Relationships

<!ELEMENT implementation
(description?
, propertyfile?
, code
, compiler?
, programminglanguage?
, humanlanguage?
, runtime?
, (os | processor | dependency)+
, usesdevice*
) >
<!ATTLIST implementation
id ID #REQUIRED
aepcompliance (aep compliant | aep non compliant)
“aep compliant”>

D.2.1.6.1 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with this component package described by the implementation element. Although the
SCA specification does not restrict the specific use of the Property Descriptor file based on
context, it is intended within the implementation element to provide component implementation
specific properties elements for use in command and control id value pair settings to the CF
Resource configure() and query() interfaces. See the description of the properties element
format in the Properties Descriptor, section D.4.

D-8

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT propertyfile

(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.2.1.6.2 description

The description element will be used to describe any pertinent information about the software
component implementation that the software developer wishes to document within the software
package profile.

<!ELEMENT description (#PCDATA)>
D.2.1.6.3 code

The code element (see Figure D-5) will be used to indicate the local filename of the code that is
described by the softpkg element, for a specific implementation of the software component. The
stack size and priority are options parameters used by the CF ExecutableDevice execute
operation. Data types for the values of these options are unsigned long. The type attribute for
the code element will also indicate the type of file being delivered to the system. The entrypoint
element provides the means for providing the name of the entry point of the component being
delivered. The valid values for the type attribute are: “Executable”, “KernelModule”,
“SharedLibrary”, and “Driver.”

The meaning of the code type attribute:

1. Executable means to use CF LoadableDevice::load and CF ExecutableDevice::execute
operations. This is a “main” process.

Driver and Kernel Module means load only.
SharedLibrary means dynamic linking.
Without a code entrypoint element means load only.

o~ DN

With a code entrypoint element means load and CF Device::execute.

D-9

SCA version 2.2.2

<!ELEMENT

FINAL / 15 May 2006

te<{NIErrats>
ol
<y - AN
¥
m
m n o
TIP3 re< NSl T > << el TR > < <{IIErralF Ty >
= d exirppmint shacircirr
o~ - CONER

Figure D-5. code Element Relationships

code

(localfile

, entrypoint?
, stacksize?
, priority?

) >
<!ATTLIST code

type CDATA #IMPLIED>
<!ELEMENT localfile EMPTY>
<!ATTLIST localfile

name CDATA #REQUIRED>
<!ELEMENT entrypoint (#PCDATA)>
<!ELEMENT stacksize (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

D.2.1.6.4 compiler

The compiler element will be used to indicate the compiler used to build the software component
being described by the softpkg element. The required name attribute will specify the name of the
compiler used, and the version attribute will contain the compiler version.

<!ELEMENT compiler EMPTY>
<!ATTLIST compiler
name CDATA
version CDATA

#REQUIRED
#IMPLIED>

D.2.1.6.5 programminglanguage

The programminglanguage element will be used to indicate the type of programming language
used to build the component implementation. The required name attribute will specify a
language such as “c”, “c++”, or “java”.

D-10

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT programminglanguage EMPTY>
<!ATTLIST programminglanguage
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.2.1.6.6 humanlanguage

The humanlanguage element will be used to indicate the human language for which the software
component was developed.

<!ELEMENT humanlanguage EMPTY>
<!ATTLIST humanlanguage
name CDATA #REQUIRED>

D.2.1.6.7 0s

The os element will be used to indicate the operating system on which the software component is
capable of operating. The required name attribute will indicate the name of the operating system
and the version attribute will contain the operating system. The os attributes will be defined in a
property file as an allocation property of string type and with names os_name and os_version and
with an action element value other than “external”. The 0s element is automatically interpreted
as a dependency and compared against allocation properties with names of os_name and
os_version. Legal os_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT os EMPTY>

<!ATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.2.1.6.8 processor

The processor element will be used to indicate the processor and/or processor family on which
this software component will operate. The processor name attribute will be defined in a property
file as an allocation property of string type and with a name of processor_name and with an
action element value other than “external”. The processor element is automatically interpreted
as a dependency and compared against an allocation property with a name of processor_name.
Legal processor_name attribute values are listed in Attachment 2 to this appendix.

<!ELEMENT processor EMPTY>
<!ATTLIST processor
name CDATA #REQUIRED>

D.2.1.6.9 dependency

The dependency element (see Figure D-6) is used to indicate the dependent relationships
between the components being delivered and other components and devices, in an SCA
compliant system. The softpkgref element is used to specify a Software Package file that must
be resident within the system for the component, described by this softpkg element, to load
without errors. The propertyref will reference a specific allocation property, using a unique
identifier, and provide the value that will be used by a CF Device capacity model. The CF
DomainManager will use these dependency definitions to assure that components and devices

D-11

SCA version 2.2.2 FINAL /15 May 2006

that are necessary for proper operation of the implementation are present and available. The type
attribute is descriptive information indicating the type of dependency.

<< NDEement>>

deperdency
shype - COATA

)
<<DTDCHho ceGroup™> >
deperndency prp
(fom dependency)

VAN

<<DICE lemendEMPTY>> << ement>>
popertyref suriiphgyet

el - CDATA

owlue - COATA

Figure D-6. dependency Element Relationships

<!ELEMENT dependency

(softpkgref | propertyref)>
<!ATTLIST dependency

type CDATA #REQUIRED>

D.2.1.6.9.1 softpkgref

The softpkgref element (see Figure D-7) refers to a softpkg element contained in another
Software Package Descriptor file and indicates a file-load dependency on that file. The other file
is referenced by the localfile element. An optional implref element refers to a particular
implementation-unique identifier, within the Software Package Descriptor of the other file.

<< DNCE lemeng> >
aiiphgyref

)

<<DTDSeruenceGup> >
sufipiqyef prp

m/ “-\a

<< NDBemendEMPTY>> <<DTDH emendEMPTY>>
Iocaliie implref
srmame - COATA oreid - CDATA

Figure D-7. softpkgref Element Relationships

D-12

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT softpkgref
(localfile
, implref?
) >

<!ELEMENT implref EMPTY>
<!ATTLIST implref
refid CDATA #REQUIRED>

D.2.1.6.9.2 propertyref

The propertyref element is used to indicate a unique refid attribute that references a simple
allocation property, defined in the package, and a property value attribute used by the domain
Management function to perform the dependency check. This refid is a DCE UUID, as specified
in section D.2.1.

<!ELEMENT propertyref EMPTY>
<!ATTLIST propertyref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

D.2.1.6.10 runtime

The runtime element specifies a runtime required by a component implementation. An example
of the runtime is a Java VM.

<!ELEMENT runtime EMPTY>

<!ATTLIST runtime
name CDATA #REQUIRED>
version CDATA #IMPLIED>

D.2.1.7 usesdevice

The usesdevice element describes any “uses” relationships this component has with a device in
the system. The propertyref element references allocation properties, which indicate the CF
Device to be used, and/or the capacity needed from the CF Device to be used.

<!ELEMENT usesdevice
(propertyref+)>
<!ATTLIST usesdevice
id ID #REQUIRED
type CDATA #REQUIRED>

D.2.1.7.1 propertyref
See D.2.1.6.9.2 for a definition of the propertyref element.

D-13

SCA version 2.2.2 FINAL /15 May 2006

D.3 DEVICE PACKAGE DESCRIPTOR

The SCA Device Package Descriptor (DPD) is the part of a Device Profile that contains
hardware device Registration attributes, which are typically used by a Human Computer
Interface application to display information about the device(s) resident in an SCA-compliant
radio system. DPD information is intended to provide hardware configuration and revision
information to a radio operator or to radio maintenance personnel. A DPD may be used to
describe a single hardware element residing in a radio or it may be used to describe the complete
hardware structure of a radio.

D.3.1 Device Package

The devicepkg element (see Figure D-8) is the root element of the DPD. The devicepkg id
attribute uniquely identifies the package and is a DCE UUID, as defined in paragraph D.2.1. The
version attribute specifies the version of the devicepkg. The format of the version string is
numerical major and minor version numbers separated by commas (e.g., "1,0,0,0"). The name
attribute is a user-friendly label for the devicepkg.

<<ADHemerd>>
¢ud-D
<mame - CDNATA
<weraon - COAER
<<ﬂw>
lL1/ \\A
[] ,
<DEemend>> | < <<m> <<ﬂ[Emum>>
erwcereppcsion =i plion
¢ud-D
oname - COATA
S - CDATA

Figure D-8. devicepkg Element Relationships

D-14

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT devicepkg
(title?
, author+
, description?
, hwdeviceregistration

) >
<!ATTLIST devicepkg
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>
D.3.1.1 title

The title element is used for indicating a title for the hardware device being described by
devicepkg.

<!ELEMENT title (#PCDATA)>

D.3.1.2 author

See D.2.1.2 for a definition of the author element.
D.3.1.3 description

The description element is used to describe any pertinent information about the device
implementation that the hardware developer wishes to document within the Device Package.

<!ELEMENT description (#PCDATA)>
D.3.1.4 hwdeviceregistration

The hwdeviceregistration element (see Figure D-9) provides device-specific information for a
hardware device. The hwdeviceregistration id attribute uniquely identifies the device and is a
DCE UUID, as defined in paragraph D.2.1. The version attribute specifies the version of the
hwdeviceregistration element. The format of the version string is numerical major and minor
version numbers separated by commas (e.g., "1,0,0,0"). The name attribute is a user-
friendlylabel for the hardware device being registered. At a minimum, the hwdeviceregistration
element must include a description, the manufacturer, the model number and the device’s
hardware class(es).

D-15

SCA version 2.2.2 FINAL /15 May 2006

LH:D
s - COANR
swrrdiem - CIRER

“ilw-bb
[~ 4 =
<« T rwred> > ﬂmi
deceriews chilacieics
I. A
= ¢
<« MEeraliPTIA R > -m «mm:
sl -_
(.- COAER

Figure D-9. hwdeviceregistration Element Relationships

<!ELEMENT hwdeviceregistration
(propertyfile?
, description
, manufacturer
, modelnumber
, deviceclass
, childhwdevice*

) >

<!ATTLIST hwdeviceregistration
id ID #REQUIRED
name CDATA #REQUIRED
version CDATA #IMPLIED>

D.3.1.4.1 propertyfile

The propertyfile element is used to indicate the local filename of the property file associated with
the hwdeviceregistration element. The format of a property file is described in the Properties

Descriptor (Section D.4).

The intent of the property file is to provide the definition of properties elements for the hardware
device being deployed and described in the Device Package (devicepkg) or hwdeviceregistration

element.

D-16

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT propertyfile

(localfile
) >
<!ATTLIST propertyfile
type CDATA #IMPLIED>

<!ELEMENT localfile EMPTY>
<I!ATTLIST localfile
name CDATA #REQUIRED>

D.3.1.4.2 description
See D.2.1.3 for definition of the description element.
D.3.1.4.3 manufacturer

The manufacturer element is used to convey the name of manufacturer of the device being
installed.

<!ELEMENT manufacturer (#PCDATA)>
D.3.1.4.4 modelnumber

The modelnumber element is used to indicate the manufacture's model number, for the device
being installed.

<!ELEMENT modelnumber (#PCDATA)>
D.3.1.4.5 deviceclass

The deviceclass element is used to identify one or more hardware classes that make up the device
being installed.

<!ELEMENT deviceclass

(class+

) >

<!ELEMENT class (#PCDATA)>

D.3.1.4.6 childhwdevice

The childhwdevice element (see Figure D-10) indicates additional device-specific information
for hardware devices that make up the root or parent hardware device registration. An example
of childhwdevice would be a radio's RF module that has receiver and exciter functions within it.
In this case, a CF Device representing the RF module itself would be a parent Device with its
DPD, and the receiver and exciter are child devices to the module. The parent/ child
relationship indicates that when the RF module is removed from the system, the receiver and
exciter devices are also removed.

D-17

SCA version 2.2.2 FINAL /15 May 2006

<< DiDEement>>
childbwdevce
<<TADChoceGauys >
childhedevce pp
{fom childhedewce)
<<NEemert>> < <D ement>>

m dewiceplgyref |
¢ud:D ohype - CONIR
<mame - CDATA
<wersin - COAIR

Figure D-10. childhwdevice Element Relationships

<!ELEMENT childhwdevice
(hwdeviceregistration | devicepkgref)>

D.3.1.4.7 hwdeviceregistration

The hwdeviceregistration element provides device-specific information for the child hardware
device. See D.3.1.4 for definition of the hwdeviceregistration element.

D.3.1.4.8 devicepkgref

The devicepkgref element is used to indicate the local filename of a Device Package Descriptor
file pointed to by Device Package Descriptor (e.g., a devicepkg within a devicepkg).

<!ELEMENT devicepkgref
(localfile)>
<!ATTLIST devicepkgref
type CDATA #IMPLIED>

D-18

SCA version 2.2.2 FINAL /15 May 2006

D.4 PROPERTIES DESCRIPTOR

The Properties Descriptor file details component and device attribute settings. For purposes of
the SCA, Property Descriptor files will contain simple, simplesequence, test, struct or
structsequence elements. These elements will be used to describe attributes of a component that
will be used for dependency checking. These elements will also be used for SCA component
values used by a CF Resource component’s configure, query, and runTest operations..

D.4.1 properties

The properties element (see Figure D-11) is used to describe property attributes that will be used
in the configure and query operations for SCA CF Resource components and for definition of
attributes used for dependency checking. The properties element can also used in the CF
TestableObject::runTest operation to configure tests and provide test results.

<<DTDElement>>
properties

!

<<DTDSequenceGroup>>
properties_grp
(from properties)

i 0.1 1_\\ o

<<DTDElementP CDATA>> <<DTDChoiceGroup>>
description properties_grp_grp
(from properties_grp)

.

<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>
simple simplesequence test struct structsequence

Figure D-11. properties Element Relationships

<!ELEMENT properties
(description?
, (simple | simplesequence | test | struct | structsequence
) +

) >

D.4.1.1 simple

The simple element (see Figure D-12) provides for the definition of a property which includes a
unique id, type, name and mode attributes of the property that will be used in the CF Resource
configure() and query() operations, for indication of component capabilities, or in the CF
TestableObject runTest operation. The simple element is specifically designed to support id-
value pair definitions. A simple property id attribute corresponds to the id of the id-value pair.

D-19

SCA version 2.2.2 FINAL /15 May 2006

The value and range of a simple property correspond to the value of the id-value pair. The
optional enumerations element allows for the definition of a label-to-value for a particular
property. The mode attribute defines whether the properties element is “readonly”, “writeonly”
or “readwrite”. The id attribute is an identifier for the simple property element. The id attribute
for a simple property that is an allocation type is a DCE UUID value, as specified in section
D.2.1. The id attribute for all other simple property elements can be any valid XML ID type.
The mode attribute is only meaningful when the type of the kind element is “configure”.

s - m——
e

oMz D
Sy - PecOdemmn e | dmdste [Homd | sheosd | fomgy | Obgesd |osched | sideg | st | sl
| e CDATA

LS
- /
AN DA PN D X e
= o=
~
=
AN Dl D X e
=
L8]
L
D VOl M Ve A TH e IO FTT
="} -t
e |t [bl e ()] O] gE |l] e — e

Figure D-12. simple Element Relationships

<!ELEMENT simple

(description?
, value?

, units?

, range?

, enumerations?
, kind*

, action?

) >
<!ATTLIST simple
id ID #REQUIRED
type (boolean | char | double | float | short | long |
objref | octet | string | ulong | ushort) #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) “readwrite”>

D.4.1.1.1 description

The description element is used to provide a description of the properties element that is being
defined.

D-20

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT description (#PCDATA)>

D.4.1.1.2 value

The value element is used to provide a value setting to the properties element.
<!ELEMENT value (#PCDATA)>

D.4.1.1.3 units

The units element describes the intended practical data representation to be used for the
properties element.

<!ELEMENT units (#PCDATA)>
D.4.1.1.4 range

The range element describes the specific min and max values that are legal for the simple
element. The intent of the range element is to provide a means to perform range validation.
This element is not used by the CF ApplicationFactory or CF Application implementations.

<!ELEMENT range EMPTY
<!ATTLIST range
min CDATA #REQUIRED
max CDATA #REQUIRED>

D.4.1.1.5 enumerations
The enumerations element is used to specify one or more enumeration elements.

<!ELEMENT enumerations
(enumeration+)>

The enumeration element is used to associate a value attribute with a label attribute..
Enumerations are legal for various integer type properties elements. An Enumeration value is
assigned to a property that implements the CORBA long type. Enumeration values are implied;
if not specified by a developer, the initial implied value is 0 and subsequent values are
incremented by 1.

Note: The advantage of the enumeration element over the sequence element from the CORBA
components specification is that the enumeration element provides a mechanism to associate a
value of a property to a label. The sequence element of the CORBA component specification
does not allow association of values (only lists of sequences).

<!ELEMENT enumeration EMPTY>

<!ATTLIST enumeration

label CDATA #REQUIRED
value CDATA #IMPLIED>

D.4.1.1.6 kind

The kind element’s kindtype attribute is used to specify the kind of property. The types of
kindtype attributes are:

1. configure, which is used in the configure and query operations of the CF Resource
interface. The application factory will use the configure kind of properties to build the

D-21

SCA version 2.2.2 FINAL /15 May 2006

CF Properties input parameter to the configure operation that is invoked on the
assemblycontroller component during application creation. The device manager will use
the configure kind of properties to build the CF Properties input parameter to the
configure operation that is invoked on components implementing the Device interface,
during device creation. The application factory will also use the configure kind of
properties for CF ResourceFactory create options parameters. When the mode is
readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. test, which is used in the runTest operation of the CF TestableObject interface. The test
kind of properties will be used as the testValues parameter to the runTest operation that is
invoked on CF Resource components.

3. allocation, which is used in the allocateCapacity and deallocateCapacity operations of
the Device interface. The application factory and device manager will use the simple
properties of kindtype allocation to build the input capacities parameter to the
allocateCapacity operation that is invoked on device components during application
creation, when the action element of those properties is external. The application factory
and device manager manage simple properties of kindtype allocation when the action is
not external. Allocation properties that are external can also be queried using the CF
PropertySet query operation.

4. execparam,. which is used in the execute operations of the Device interface. The CF
ApplicationFactory and DeviceManager will use the execparam kind of properties to
build the CF Properties input parameter to the execute operation that is invoked on the
CF ExecutableDevice components during CF Device and/or CF Application creation.
Only simple elements can be used as execparam types.

5. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam type of properties to
build the CF Properties input parameter to the createResource operation.

A property can have multiple kind elements and the default kindtype is configure.

<!ELEMENT kind EMPTY>

<!ATTLIST kind
kindtype (allocation | configure | test | execparam |
factoryparam) “configure”>

D.4.1.1.7 action

The action element is used to define the type of comparison used to compare an SPD property
value to a device property value, during the process of checking SPD dependencies. The kindtype
attribute of the action element, will determine the type of comparison to be made (e.g., equal, not
equal, greater than, etc.). The default value for kindtype is external.

In principle, the action element defines the operation executed during the comparison of the
allocation property value, provided by an SPD dependency element, to the associated allocation
property value of a CF Device. The allocation property is on the left side of the action and the
dependency value is on the right side of the action. This process allows for the allocation of

D-22

SCA version 2.2.2 FINAL /15 May 2006

appropriate objects within the system based on their attributes, as defined by their dependent
relationships.

For example, if a CF Device's properties file defines a DeviceKind allocation property whose
action element is set to "equal”, then at the time of dependency checking a valid DeviceKind
property is checked for equality. If a software component implementation is dependent on a
DeviceKind property with its value set to "NarrowBand", then the component's SPD dependency
propertyref element will reference the id of the DeviceKind allocation property with a value of
"NarrowBand". At the time of dependency checking, the CF ApplicationFactory will check CF
Devices whose properties kind element is set to “allocation” and property id is DeviceKind for
equality against a "NarrowBand" value.

<!ELEMENT action EMPTY>

<ATTLIST action
type (eg | ne | gt | 1t | ge | le | external
) "external">

D.4.1.2 simplesequence

The simplesequence element (see Figure D-13) is used to specify a list of properties with the
same characteristics (e.g., type, range, units, etc.). The simplesequence element definition is
similar to the simple element definition except that it has a list of values instead of one value.
The simplesequence element maps to the sequence types for CF and PortTypes CORBA
modules, defined in SCA Appendix C section C.2, based upon the type attribute.

A W —
h——

=

—
e

Figure D-13. simplesequence Element Relationships

<!ELEMENT simplesequence
(description?
, values?
, units?

range?

kind*

action?

~ ~ ~ ~

D-23

SCA version 2.2.2 FINAL /15 May 2006

<!ATTLIST simplesequence
id ID #REQUIRED

type (boolean | char | double | float | short | long |
objref | octet | string | ulong |ushort) #REQUIRED
name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) “readwrite”>

<!ELEMENT values
(value+)>

D.4.1.3 test

The test element (see Figure D-14) is used to specify a list of test properties for executing the
runTest operation in order to perform a component specific test. This element contains
inputvalue and resultvalue elements and it has an id attribute for grouping test properties to a
specific test. The id attribute will be represented by a numeric value. Inputvalues are used to
configure the test to be performed (e.g., frequency and RF power output level). When the test
has completed, resultvalues contain the results of the testing (e.g., pass or a fault code/message)

<< CNDEemend >
et

il - CIDNIA

<< OIS e G >
el pp
(o el

o B .

< < CNCE lemendP COA TA- > =< NDEemend- = <& CNDBement>>
degcapimn ek T T

Figure D-14. test Element Relationships

<!ELEMENT test
(description
, 1lnputvalue?
, resultvalue

) >
<!ATTLIST test
id CDATA #REQUIRED>

D.4.1.3.1 inputvalue

The inputvalue element is used to provide test configuration properties. The simple properties it
contains must have a kindtype value of test.

<!ELEMENT inputvalue
(simple+)>

D-24

SCA version 2.2.2 FINAL /15 May 2006

D.4.1.3.2 resultvalue

The resultvalue element is used to specify the desired results of the runTest operation. The
simple properties it contains must have a kindtype value of test.

<!ELEMENT resultvalue
(simple+)>

D.4.1.4 struct

The struct element (see Figure D-15) is used to group properties with different characteristics
(i.e., similar to a structure or record entry). Each item in the struct element can be a different
simple type (e.g., short, long, etc.). The struct element corresponds to the CF Properties type
where each struct item (ID, value) corresponds to a properties element list item. The properties
element list size is based on the number of struct items.

<<OIDEemert>>
sincd

¢ul-D
<rame - COATA
<mde - {resdonty | resderile | wnileonly) = resdesi e

< <NDSeqpenceGmys >
E T
(iom sénech
D1
[U] g//// :3\\& 8
<<DIDBemerfPCONTA> > <<{ACE lemendEMPTY> >
descaplion cxaviguraloniind
Shandiype - (coniguee | Bciorypanam) = conigue
1in |
&
<<DIDBemert> >
Smple
oud-D
oype - (ke | char | doubie | foed | shord | long | obyref | octed | sfing | uong | ushorf)
smame - COATA
ormude - {readonly | esderile fenieonly) = readerile

Figure D-15. struct Element Relationships

D-25

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT struct
(description?
, Simple+
, configurationkind?

) >

<!ATTLIST struct
id ID #REQUIRED
name CDATA #IMPLIED

mode (readonly | readwrite | writeonly) "readwrite">"
D.4.1.4.1 configurationkind

The configurationkind element’s kindtype attribute is used to specify the kind of property. The
Kindtypes are:

1. configure, which is used in the configure() and query() operations of the SCA Resource
interface. The CF ApplicationFactory and DeviceManager will use the configure kind of
properties to build the CF Properties input parameter to the configure() operation that is
invoked on the CF Resource components during application creation. When the mode is
readonly, only the query behavior is supported. When the mode is writeonly, only the
configure behavior is supported. When the mode is readwrite, both configure and query
are supported.

2. factoryparam, which is used in the createResource operations of the CF ResourceFactory
interface. The CF ApplicationFactory will use the factoryparam kind of properties to
build the CF Properties input parameter to the createResource() operation. A property
can have multiple configurationkind elements and their default kindtype is “configure”.

<!ELEMENT configurationkind EMPTY>
<!ATTLIST configurationkind
kindtype (configure | factoryparam) “configure”>

D.4.1.5 structsequence

The structsequence element (see Figure D-16) is used to specify a list of properties with the same
struct characteristics. The structsequence element maps to a properties element having the CF
Properties type. Each item in the CF Properties type will be the same struct definition as
referenced by the structrefid attribute.

D-26

SCA version 2.2.2 FINAL /15 May 2006

<< NDSerpenceGaupn>>
sfuciserpEnce rp
(iom séncseyg ence)
(4] s a8
<<DADEemendPCDAIA> > | (< <DNDBement>> <<DIE lemer@EMPTY>>
desoripiion afuchehe coviguraioniand
<hindiype - fooigure |clorypea) = conigue

Figure D-16. structsequence Element Relationships

<!ELEMENT structsequence
(description?
, structvalue+
, configurationkind?

) >
<!ATTLIST structsequence
id ID #REQUIRED
structrefid CDATA #REQUIRED
name CDATA #IMPLIED
mode (readonly | readwrite | writeonly) "readwrite">

<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

D-27

SCA version 2.2.2 FINAL /15 May 2006

D.5 SOFTWARE COMPONENT DESCRIPTOR

This descriptor file is based on the CORBA Component Descriptor specification. The SCA
components CF Resource, CF Device, and CF ResourceFactory that are described by the
software component descriptor are based on the SCA CF specification, and the following
specification concentrates on definition of the elements necessary for describing the ports and
interfaces of these components.

D.5.1 softwarecomponent

The softwarecomponent element (see Figure D-17) is the root element of the software
component descriptor file. For use within the SCA the sub-elements that are supported include:

1. corbaversion — indicates which version of CORBA the component is developed for.
2. componentrepid — is the repository id of the component
3. componenttype — identifies the type of software component object
4. componentfeatures — provides the supported message ports for the component
5. interface — describes the component unique id and name for supported interfaces.
<< DiDEemend>>
ayesrecTporend
b
<<DNDSepeceGuup>>
mm_yp
<¢:Bmufunm» <¢IEHH'°
(Mm(ﬂﬂh
<<Il[l§lmn£m> <TADBement>>

aqii:m

Figure D-17. softwarecomponent Element Relationships

<!ELEMENT softwarecomponent
(corbaversion
componentrepid
componenttype
componentfeatures
interfaces
propertyfile?

~ ~ ~ ~ ~ ~

D-28

SCA version 2.2.2 FINAL /15 May 2006

D.5.1.1 corbaversion

The corbaversion element is intended to indicate the version of CORBA that the delivered
component supports.

<!ELEMENT corbaversion (#PCDATA) >
D.5.1.2 componentrepid

The componentrepid uniquely identifies the interface that the component is implementing. The
componentrepid may be referred to by the componentfeatures element. The componentrepid is
derived from the CF Resource, CF Device, or CF ResourceFactory.

<!ELEMENT componentrepid EMPTY>
<!ATTLIST componentrepid
repid CDATA #REQUIRED>

D.5.1.3 componenttype

The componenttype describes properties of the component. For SCA components, the
component types include resource, device, resourcefactory, domainmanager, log, filesystem,
filemanager, devicemanager, namingservice and eventservice.

<!ELEMENT componenttype (#PCDATA)>
D.5.1.4 componentfeatures

The componentfeatures element (see Figure D-18) is used to describe a component with respect
to the components that it inherits from, the interfaces the component supports, and its provides
and uses ports. At a minimum, the component interface has to be a CF Resource, CF
ResourceFactory, or CF Device interface. If a component extends the CF Resource or CF
Device interface then all the inherited interfaces (e.g., CF Resource) are depicted as
supportsinterface elements.

<<DTH emend>>
compnent Eaf res

!
<< DIDSeqpenceGmup>>
compoentbahees pp
{Fom component Eak se)

07 \a

<<OTIHemendEMPTY> > | | << DIDEement>>
s nferbce poria
¢repud - COATA
¢upprianame - COATA

Figure D-18. componentfeatures Element Relationships

D-29

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentfeatures
(supportsinterface~*
, ports

) >

D.5.1.4.1 supportsinterface

The supportsinterface element is used to identify an IDL interface that the component supports.
These interfaces are distinct interfaces that were inherited by the component’s specific interface.
One can widen the component’s interface to be a supportsinterface. The repid is used to refer to
the interface element (see interfaces section D.5.1.5).

<!ELEMENT supportsinterface EMPTY>
<!ATTLIST supportsinterface
repid CDATA #REQUIRED
supportsname CDATA #REQUIRED>

D.5.1.4.2 ports

The ports element (see Figure D-19) describes what interfaces a component provides and uses.
The provides elements are interfaces that are not part of a component’s interface but are
independent interfaces known as facets (in CORBA Components terminology) (i.e. a provides
port at the end of a path, like 1/0 Device or Modem Device, does not need to be a CF Port type).
The uses element is a CF Port interface type that is connected to a provides or supportinterfaces
interface. Any number of uses and provides elements can be given in any order. Each ports
element has a name and references an interface by repid (see interfaces section D.5.1.5). The
port names are used in the Software Assembly Descriptor to connect ports together. A ports
element also has an optional porttype element that allows for identification of port classification.
Values for porttype include “data”, “control”, “responses”, and “test”. If a porttype is not given
then “control” is assumed.

<< DNCE lemend> >

<< IDChoiceGaup> >
poris_pgp
(fom por)

VAN

<<DTDBement>> <<DIDEement>>

crepd - COATA crepd - CDATA
opradeaname - COATA | | ¢usesname - COATA

Figure D-19. ports Element Relationships

D-30

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT ports
(provides | uses)~*
>

<!ELEMENT provides
(porttype*)>

<!ATTLIST provides
repid CDATA #REQUIRED
providesname CDATA #REQUIRED>

<!ELEMENT uses

(porttypex*

) >

<!ATTLIST uses
repid CDATA #REQUIRED
usesname CDATA #REQUIRED>

<!ELEMENT porttype EMPTY>
<!ATTLIST porttype
type (data | control | responses | test) #REQUIRED>

D.5.1.5 interfaces
The interfaces element is made up of one to many interface elements.

<!ELEMENT interfaces
(interface+)>

The interface element describes an interface that the component, either directly or through
inheritance, provides, uses, or supports. The name attribute is the character-based non-qualified
name of the interface. The repid attribute is the unique repository id of the interface, which has
formats specified in the CORBA specification. The repid is also used to reference an interface
element elsewhere in the SCD, for example from the inheritsinterface element.

<!ELEMENT interface
(inheritsinterface*) >
<!ATTLIST interface
repid CDATA #REQUIRED
name CDATA #REQUIRED>

<!ELEMENT inheritsinterface EMPTY>
<!ATTLIST inheritsinterface
repid CDATA #REQUIRED

D.5.1.6 propertyfile

The propertyfile element is used to indicate the local filename of the Property Descriptor file
associated with the software component. The definition of the propertyfile element can be found
in section D.2.1.4 . Within the Software Component Descriptor, the localfile sub-element of the

D-31

SCA version 2.2.2 FINAL /15 May 2006

propertyfile element is a relative pathname referencing a file in the same directory as the SCD or
in a directory that is relative to the directory where the SCD file is located.

D-32

SCA version 2.2.2 FINAL /15 May 2006

D.6 SOFTWARE ASSEMBLY DESCRIPTOR

This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file;
the softwareassembly element (see Figure D-20). The SAD is based on the CORBA
Components Specification Component Assembly Descriptor. The intent of the software
assembly is to provide the means of describing the assembled functional application and the
interconnection characteristics of the SCA components within that application. The component
assembly provides four basic types of application information for domain management. The first
IS partitioning information that indicates special requirements for collocation of components, the
second is the assembly controller for the software assembly, the third is connection information
for the various components that make up the application assembly, and the fourth is the visible
ports for the application assembly.

D.6.1 softwareassembly

The installation of an application into the system involves the installation of a SAD file. The
SAD file references component’s SPD files to obtain deployment information for these
components. The softwareassembly element’s id attribute is a DCE UUID, as specified in section
D.2.1, which uniquely identifies the assembly. The softwareassembly element’s name attribute is
the user-friendly name for the ApplicationFactory name attribute. The softwareassembly
element’s version attribute is the version of the application.

«DTDElement»
softwareassembly
id: ID
DTDElement
————————— name : CDATA 01 (;xternal orts?
— #:PCDATA _! version : CDATA =
«DTDElement»
description
0.1 0..1
«DTDElement»
connections
«DTDElement»
componentfiles
«DTDElement» «DTDElement»
partitioning assemblycontroller

Figure D-20. softwareassembly Element Relationships

D-33

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT softwareassembly
(description?
, componentfiles
, partitioning
, assemblycontroller
, connections?
, externalports?

) >

<IATTLIST softwareassembly
id ID #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED>

D.6.1.1 description

The description element of the component assembly may be used to describe any information the
developer would like to indicate about the assembly.

<!ELEMENT description (#PCDATA)>
D.6.1.2 componentfiles

The componentfiles element is used to indicate that an assembly is made up of 1..n component
files. The componentfile element contains a reference to a local file, which is a Software
Package Descriptor file.

<!ELEMENT componentfiles
(componentfilet+)>

D.6.1.2.1 componentfile

The componentfile element is a reference to a local file. See section D.2.1.4.1 for the definition
of the localfile element. The type attribute is “Software Package Descriptor”.

<!ELEMENT componentfile
(localfile)>
<!ATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED>

D.6.1.3 partitioning

A component partitioning element (see Figure D-21) specifies a deployment pattern of
components and their components-to-hosts relationships. A component instantiation is captured
inside a componentplacement element. The hostcollocation element allows the components to be
placed on a common device. When the componentplacement is by itself and not inside a
hostcollocation, it then has no collocation constraints.

D-34

SCA version 2.2.2 FINAL /15 May 2006

Figure D-21. partitioning Element Relationships

<!ELEMENT partitioning
(componentplacement | hostcollocation)+>

D.6.1.3.1 componentplacement

The componentplacement element (see Figure D-22) defines a particular deployment of a
component. The component can be deployed either directly or by using a CF ResourceFactory. .

<<OTIBement>>
compreniplecemend

!

<<DTDSerpenceGoup> >
componeniplecemend prp
[ﬁmm‘nml

o / "\ a

<< DICE lemendEM PTY> >
componenteref

<<[DNCE lemend>>
componend nefeniadion

oeld - COATA

¢d:-D

Figure D-22. componentplacement Element Relationships

<!ELEMENT componentplacement

(componentfileref

, componentinstantiation+
) >

D.6.1.3.2 componentfileref

The componentfileref element is used to reference a particular Software PackageDescriptor file.
The componentfileref element’s refid attribute corresponds to the componentfile element’s id

attribute.

D-35

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

D.6.1.3.3 componentinstantiation

The componentinstantiation element (see Figure D-23) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation’s id attribute is a DCE UUID that uniquely identifies the component.
The id is a DCE UUID value as specified in section D.2.1. . The componentinstantiation
element’s id may be referenced by the usesport and providesport elements within the SAD file. It
is the component name for the instantiation not the application name.

The optional componentproperties element (see Figure D-24) is a list of configure, factoryparam,
and/or execparam properties values that are used in creating the component or for the initial
configuration of the component.

The following sources will be searched in the given precedence order for initial values for simple
properties with a kindtype of “execparam” or “configure” and a mode attribute of “readwrite” or
“writeonly”:

1. The SAD partitioning : componentplacement : componentinstantiation element,

2. The value or default value, if any, from the SPD using the properties precedence stated in
D.2.1.

If no values are found in the sources above, the property is discarded.

The following sources will be searched in the given precedence order for initial values for simple
properties with a kindtype of “factoryparam”:

1. The SAD partitioning : componentplacement : componentinstantiation : findcomponent :
componentresourcefactoryref : resourcefactoryproperties element,

2. The SAD partitioning : componentplacement : componentinstantiation :
componentproperties element,

3. The value or default value, if any, from the SPD using the properties precedence stated in
D.2.1.

If no values are found in the sources above, the property is discarded.

The optional findcomponent element (see Figure D-25) is used to obtain the CORBA object
reference for the component instance. The two sources for obtaining a CORBA object reference
are:

1. The componentresourcefactoryref element, which refers to a particular CF
ResourceFactory componentinstantiation element found in the SAD, which is used to
obtain a CF Resource instance for this componentinstantiation element. The refid
attribute refers to a unique componentinstantiation id attribute. The
componentresourcefactoryref element contains an optional resourcefactoryproperties
element (see Figure D-26), which specifies the properties “qualifiers”, for the CF
ResourceFactory create call.

D-36

SCA version 2.2.2

FINAL / 15 May 2006

2. The CORBA Naming Service, which is used to find the component’s CORBA object
reference. The name specified in the namingservice element is a partial name that is used
by the CF ApplicationFactory to form the complete context name.

The optional findcomponent element should be specified except when there is no CORBA object
reference for the component instance (e.g., DSP code).

<<DIDEBement>>
componendnsdantaion

«u:-D

4

{fom

<<DIDSepenceGrup>>
compreniinesieniaon pp

D1 D_1

D1

<< DIDEemendPCDATA> > << IDEement>>

<<DTDH ement> >
ndcormponend

Figure D-23. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
, findcomponent?

) >

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<= CADEement->
compreniaoperien

1n

< <IN i cels mp >
urqln!ﬂlqnﬁ!l 1 [pp

N

< <O el M PTY > > «[l[Ehn!lbb ﬂdJIIEImb <« [NCE kel >
et sinwiaerp et
el - COATA {mﬂ:ﬂl‘[ﬁ .:'n!ii COATA el - CDATA
gl - COATA

Figure D-24. componentproperties Element Relationships

D-37

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

(o rckomporerd)

L

<<DIHemerd>> <<DIEewverdE AP TY>>

rEmrgEanKe
<veiid - CODATA <rame - COATA

Figure D-25. findcomponent Element Relationships

<!ELEMENT findcomponent
(componentresourcefactoryref | namingservice)>

<!ELEMENT componentresourcefactoryref
(resourcefactoryproperties?)>

<!ATTLIST componentresourcefactoryref
refid CDATA #REQUIRED>

<<[DNDH emend>>
resmece Boioryproper e

1n
<<DIDChoices > >
resmacefectonpoperies_pp
(fom esmsrcebcionpmper ies)

S AN

< <DNCE lemend>> << ement>>
smpleref smplesergenceret sénwdref sfuctaeny enceref
oreld - COATA oreld - CDATA orefd - CDATA <=l - CDATA
owhme - COATA

Figure D-26. resourcefactoryproperties Element Relationships
<!ELEMENT resourcefactoryproperties
(simpleref | simplesequenceref | structref |

structsequenceref)+ >

<!ELEMENT simpleref EMPTY>

D-38

SCA version 2.2.2

<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+)>

<!ELEMENT wvalues
(value+)>

<!ELEMENT value (#PCDATA)>
D.6.1.3.4 hostcollocation

FINAL / 15 May 2006

The hostcollocation element specifies a group of component instances that are to be deployed
together on a single host. For purposes of the SCA, the componentplacement element will be
used to describe the 1...n components that will be collocated on the same host platform. Within
the SCA specification, a host platform will be interpreted as a single device. The id and name
attributes are optional but may be used to uniquely identify a set of collocated components

within a SAD file.

<!ELEMENT hostcollocation

(componentplacement)+>
<!ATTLIST hostcollocation

id 1D #IMPLIED

name CDATA #IMPLIED>

D.6.1.3.4.1 componentplacement

See componentplacement, section D.6.1.3.1.

D-39

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.4 assemblycontroller

The assemblycontroller element indicates the component that is the main CF Resource controller
for the assembly. The CF Application object delegates its CF Resource::configure, query, start,
stop, and runTest operations to the CF Resource’s Assembly Controller component.

<!ELEMENT assemblycontroller
(componentinstantiationref)>

D.6.1.5 connections

The connections element is a child element of the softwareassembly element. The connections
element is intended to provide the connection map between components in the assembly.

!ELEMENT connections
(connectinterface*)>

D.6.1.5.1 connectinterface

The connectinterface element (see Figure D-27) is used when application components are being
assembled to describe connections between their port interfaces. The connectinterface element
consists of a usesport element and a providesport, componentsupportedinterface, or findby
element. These elements are intended to connect two compatible components.

<<DNDEement>>
comecinderbee

¢d:-D

Figure D-27. connectinterface Element Relationships

<!ELEMENT connectinterface
(usesport
, (providesport | componentsupportedinterface | findby)
) >
<!ATTLIST connectinterface
id ID #IMPLIED>

D-40

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.5.1.1 usesport

The usesport element (see Figure D-28) identifies, using the usesidentifier element, the
component port that is using the provided interface from the providesport element. A CF
Resource type component may be referenced by one of four elements. One element is the
componentinstantiationref that refers to the componentinstantiation id attribute (see
componentinstantiation) within the assembly; the other elements are findby,
devicethatloadedthiscomponentref, and deviceusedbythiscomponentref.

<<DIDEement>>

<< DDSerpenceGup>>
Lee=yprd_pyp
(from veepod)

o Ny @
<<DIDHemendPCOATA>> | [<<DTDChoi ceGuoup>>
ueesirdend fer ey prp_prp
(fom useapord)

Ny

<<DNDEement>>

<<[DNCE lemenEMPTY>>

oreid - CDATA

<<DIDBemendEM PTY>>
<<[NCE lemeniEMPTY>> devceedingdh scomponente f
dewcedhad oadediscomponentre f <=l - CDATA

orefd - CDATA e - CDATA

Figure D-28. usesport Element Relationships

<!ELEMENT usesport
(usesidentifier
, (componentinstantiationref |
devicethatloadedthiscomponentref |
deviceusedbythiscomponentref | findby)
) >

D.6.1.5.1.1.1 usesidentifier

The usesidentifier element identifies which “uses port” on the component is to participate in the
connection relationship. This identifier will correspond with an id for one of the component
ports specified in the Software Component Descriptor.

<!ELEMENT usesidentifier (#PCDATA)>

D-41

SCA version 2.2.2 FINAL /15 May 2006

D.6.1.5.1.1.2 componentinstantiationref

The componentinstantiationref element refers to the id attribute of the componentinstantiation
element within the Software Assembly Descriptor file. The refid attribute will correspond to the
unique componentinstantiation id attribute.

<!ELEMENT componentinstantiationref EMPTY>
<!ATTLIST componentinstantiationref
refid CDATA #REQUIRED>

D.6.1.5.1.1.3 findby

The findby element (see Figure D-29) is used to resolve a connection between two components.
It tells the domain management function how to locate a component interface involved in a
connection relationship. The namingservice element specifies a naming service name to search
for the desired component interface.

The domainfinder element specifies an element within the domain that is known to the domain
management function.

<<PJIDBamneni=>>

<<DIDChoceGrp=>
indby_op
(i indy)

<<DIDBanentEMPTY > >
<DIDBemeniE .
< i pwa> 3 o

- - <lype - @amanages | log | evenichannd | namingsenice)
— oname : CDATA

Figure D-29. findby Element Relationships

<!ELEMENT findby
(namingservice | domainfinder)>

D.6.1.5.1.1.4 namingservice

The namingservice element is a child element of the findby element. The namingservice element
is used to indicate to the CF ApplicationFactory the requirement to find a component interface.
The CF ApplicationFactory will use the name attribute to search the CORBA Naming Service
for the appropriate interface.

D-42

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT namingservice EMPTY
<!ATTLIST namingservice
name CDATA #REQUIRED>

D.6.1.5.1.1.5 domainfinder

The domainfinder element is a child element of the findby element. The domainfinder element is
used to indicate to the CF ApplicationFactory the necessary information to find an object
reference that is of specific type and may also be known by an optional name within the domain.
The valid type attributes are “filemanager”, “log”, “eventchannel”, and “namingservice”. If a
name attribute is not supplied, then the component reference returned is the CF
DomainManager’s FileManager, or Naming Service corresponding to the type attribute
provided. If a name attribute is not supplied and the type attribute has a value of “log”, then a
null reference is returned. The type attribute value of “eventchannel” is used to specify the event
channel to be used in the OE’s CORBA Event Service for producing or consuming events. If the
name attribute is not supplied and the type attribute has a value of “eventchannel” then the
Incoming domain management event channel is used.

<!ELEMENT domainfinder EMPTY>
<!ATTLIST domainfinder

type (filemanager | log | eventchannel | namingservice)
#REQUIRED
name CDATA #IMPLIED>

D.6.1.5.1.1.6 devicethatloadedthiscomponentref

The devicethatloadedthiscomponentref element refers to a specific component found in the
assembly, which is used to obtain the logical CF Device that was used to load the referenced
component from the CF ApplicationFactory. The logical CF Device obtained is then associated
with this component instance. This relationship is needed when a component (e.g., modem
adapter) is pushing data and/or commands to a non-CORBA capable device such as modem.

<!ELEMENT devicethatloadedthiscomponentref EMPTY>
<!ATTLIST devicethatloadedthiscomponentref
refid CDATA #REQUIRED>

D.6.1.5.1.1.7 deviceusedbythiscomponentref

The deviceusedbythiscomponentref element refers to a specific component, within the assembly,
which is used to obtain the CF Device (e.g., logical Device) that is being used by the specific
component from the CF ApplicationFactory. This relationship is needed when a component is
pushing or pulling data and/or commands to another component that exists in the system such as
an audio device.

<!ELEMENT deviceusedbythiscomponentref EMPTY>
<!ATTLIST deviceusedbythiscomponentref
refid CDATA #REQUIRED
usesrefid CDATA #REQUIRED>

D.6.1.5.1.2 providesport
The providesport element (see Figure D-30) identifies, using the providesidentifier element, the

D-43

SCA version 2.2.2 FINAL /15 May 2006

component port that is provided to the usesport interface within the connectinterface element. A
CF Resource type component may be referenced by one of four elements. One element is the
componentinstantiationref that refers to the componentinstantiation id within the assembly; the
other elements are findby, devicethatloadedthiscomponentref, and
deviceusedbythiscomponentref. The findby element by itself is used when the object reference is
not a CF Resource type.

<< NDBement> >
proreciepad
|
<< DNDS equenceGrup>>
pursiespord_gp
(fom prodespo)
(] g/ N @
<< > | |<<DIDChoiceGrup> >
peredesiend fer prodespod prp_grp
(fom prosdespord_pp)
<<DITEemenEMPTY> > <<DNDEement>>
. . fnudtry
el - COATA

<< IDEBemendEM PTY>>
P —— devea serdindhscomponentne f

<1elid - COATA sumeweid - COATA

Figure D-30. providesport Element Relationships

<!ELEMENT providesport
(providesidentifier
, (componentinstantiationref |
devicethatloadedthiscomponentref |
deviceusedbythiscomponentref | findby)
) >

D.6.1.5.1.2.1 providesidentifier

The providesidentifier element identifies which “provides port” on the component is to
participate in the connection relationship. This identifier will correspond with a repid attribute
for one of the component ports elements, specified in the Software Component Descriptor.

<!ELEMENT providesidentifier (#PCDATA)>
D.6.1.5.1.2.2 componentinstantiationref
See D.6.1.5.1.1.2 for a description of the componentinstantiationref element.

D-44

SCA version 2.2.2 FINAL /15 May 2006

D.6.15.1.2.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element. The namingservice element’s
name attribute denotes a complete naming context.

D.6.1.5.1.2.4 devicethatloadedthiscomponentref.

See D.6.1.5.1.1.6 for a description of the devicethatloadedthiscomponentref element.
D.6.1.5.1.2.5 deviceusedbythiscomponentref.

See D.6.1.5.1.1.7 for a description of the deviceusedbythiscomponentref element.
D.6.1.5.1.3 componentsupportedinterface

The componentsupportedinterface element (see Figure D-31) specifies a component, which has a
supportsinterface element, that can satisfy an interface connection to a port specified by the
usesport element, within a connectinterface element. This component is identified by a
componentinstantiationref or a findby element. The componentinstantiationref identifies a
component within the assembly. The findby element points to an existing component that can be
found within a Naming Service.

<<[NCE lemeng> >

<<DNDS expuerceG mp> >
componentsupporfedinger oe
{fom components ppored ey bee)

0oy N\ @

> <<OTDChoce(hp)
- OFP_OFP

o))

<

i y

<< IDBemendEMPTY>> << DNCE lemend> >
componeninestentaionef findry

Figure D-31. componentsupportedinterface Element Relationships

<!ELEMENT componentsupportedinterface
(supportedidentifier
, (componentinstantiationref | findby)
) >

D.6.1.5.1.3.1 supportedidentifier

The supportedidentifier element identifies which supported interface on the component is to
participate in the connection relationship. This identifier will correspond with the repid attribute

D-45

SCA version 2.2.2 FINAL /15 May 2006

of one of the component’s supportsinterface elements, specified in the Software Component
Descriptor.

<!ELEMENT supportedidentifier (#PCDATA)>

D.6.1.5.1.3.2 componentinstantiationref.

See section D.6.1.5.1.1.2 for a description of the componentinstantiationref element.
D.6.1.5.1.3.3 findby.

See section D.6.1.5.1.1.3 for a description of the findby element.

D.6.1.6 externalports

The optional externalports element is a child element of the softwareassembly element (see
Figure D-32). The externalports element is used to identify the visible ports for the software
assembly. The CF Application getport() operation is used to access the assembly’s visible ports.

<!ELEMENT externalports
(port+
) >

<<DIDEement> >
pod

4

<<DNDS epenceGup>>
pord_prp
(from paord)

o o N

<< DICE lemendPCDATA>> | [<<DIDChoiceGmoup>> | | <<DTDHemeniEMPTY>>
decripfion pord_pp compreniedaniaone

(fom pod _pp) <vefd - COATA

el NN

<< DTDBemeniPCDATA>> | [<<OTCE lemendP COATA> > | | << DTDEBemendPCOATA > >

Figure D-32. port Element Relationships

D-46

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT port
(description?
, (usesidentifier | providesidentifier |
supportedidentifier)
, componentinstantiationref
) >

<!ELEMENT description (#PCDATA)>

D-47

SCA version 2.2.2 FINAL /15 May 2006

D.7 DEVICE CONFIGURATION DESCRIPTOR

This section describes the XML elements of the Device Configuration Descriptor (DCD) XML
file; the deviceconfiguration element (see Figure D-33). The DCD is based on the SAD (e.g.,
componentfiles, partitioning, etc.) DTD. The intent of the DCD is to provide the means of
describing the components that are initially started on the CF DeviceManager node, how to
obtain the CF DomainManager object reference, connections of services to components (CF
Devices, CF DeviceManager), and the characteristics (file system names, etc.) for a CF
DeviceManager. The componentfiles and partitioning elements are optional; if not provided,
that means no components are started up on the node, except for a CF DeviceManager. If the
partitioning element is specified then a componentfiles element has to be specified also.

D.7.1 deviceconfiguration

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the
device configuration. This id attribute is a UUID value as specified in section D.2.1. The name
attribute is the user-friendly name for the CF DeviceManager’s label attribute.

< <{IErwrat> >
deshorresiipesiien
B H

s COANR

‘dl.m—a
dedcrresiipesiiey g
eyl]
o .
< NP TIAR> _b_—\-‘-"“—-_) <TEErmrat>>
e iplien L) e tem—
[+ 3 o
< <{THIErwrat> > <« NErarat> >
e] (R (R (X | Chmmb—ey |
< 4 ",
PRI —— S —— Y = ——

Figure D-33. deviceconfiguration Element Relationships

<!ELEMENT deviceconfiguration

(description?
devicemanagersoftpkg
componentfiles?
partitioning?
connections?

, domainmanager

, filesystemnames?

) >
<!ATTLIST deviceconfiguration

id ID #REQUIRED

name CDATA #IMPLIED>

~ ~ ~ ~

D-48

SCA version 2.2.2 FINAL /15 May 2006

D.7.1.1 description

The optional description element, of the deviceconfiguration element, may be used to provide
information about the device configuration.

<!ELEMENT description (#PCDATA)>
D.7.1.2 devicemanagersoftpkg

The devicemanagersoftpkg element refers to the SPD for the CF DeviceManager that
corresponds to this DCD. The SPD file is referenced by a localfile element. The referenced file
can be used to describe the CF DeviceManager implementation and to specify the usesports for
the services (Log(s), etc.) used by the CF DeviceManager. See (section D.2.1.4.1) for
description of the localfile element.

<!ELEMENT devicemanagersoftpkg
(localfile
) >

D.7.1.3 componentfiles

The optional componentfiles element is used to reference deployment information for
components that are started up on the device. The componentfile element references a Software
Package Descriptor (SPD). The SPD, for example, can be used to describe logical Devices, a CF
DeviceManager, a CF DomainManager, a Naming Service, and CF FileSystems. See section
D.6.1.2 for the definition of the componentfiles element.

D.7.1.4 partitioning

The optional partitioning element consists of a set of componentplacement elements. A
component instantiation is captured inside a componentplacement element.

<!ELEMENT partitioning
(componentplacement) *>

D.7.1.4.1 componentplacement

The componentplacement element (see Figure D-34) is used to define a particular deployment of
a component. The componentfileref element identifies the component to be deployed. The
componentinstantiation element identifies the actual component created and its id attribute is a
DCE UUID value with the format as specified in section D.2.1. Multiple components of the
same kind can be created within the same componentplacement element.

The optional deployondevice element indicates the device on which the componentinstantiation
element is deployed. The optional compositepartofdevice element indicates the parent device of
the componentinstantiation element. When the component is a logical device, the devicepkgfile
element indicates the hardware device information for the logical device.

D-49

SCA version 2.2.2 FINAL /15 May 2006

<<{JIE bk ment>o
o gt mewt
me
g et op
o oy
I
m / \\ -]
oI e et AT > 1- <EDEr— t>->
St e iasy g joloam sl i s A
e - COAT o1 'R R <MD
a A [,]
<D el WP TV >o- | |-o<DN0E e oiE MPTY > | (-<-<I0E et
Ee pITFe=ntce o Aty
<m8d : CONTA < - CDATA iy - COATA

Figure D-34. componentplacement Element Relationships

<!ELEMENT componentplacement
(componentfileref
, deployondevice?
, compositepartofdevice?
, devicepkgfile?
, componentinstantiation+

D.7.1.4.1.1 componentfileref

The componentfileref element is used to reference a componentfile element within the
componentfiles element. The componentfileref element’s refid attribute corresponds to a
componentfile element’s id attribute.

<!ELEMENT componentfileref EMPTY>
<!ATTLIST componentfileref
refid CDATA #REQUIRED>

D.7.1.4.1.2 deployondevice

The deployondevice element is used to reference a componentinstantiation element on which this
componentinstantiation is deployed.

<!ELEMENT deployondevice EMPTY>
<!ATTLIST deployondevice
refid CDATA #REQUIRED>

D.7.1.4.1.3 devicepkgfile

The devicepkgfile element is used to refer to a device package file that contains the hardware
device definition.

D-50

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT devicepkgfile

(localfile
) >
<!ATTLIST devicepkgfile
type CDATA #IMPLIED>

D.7.1.4.1.4 localfile
See D.2.1.4.1 for a definition of the localfile element.
D.7.1.4.1.5 compositepartofdevice

The compositepartofdevice element is used when a parent-child relationship exists between
devices to reference the componentinstantiation element that describes the parent device when
this device’s componentinstantiation element describes the child device.

<!ELEMENT compositepartofdevice EMPTY>
<!ATTLIST compositepartofdevice
refid CDATA #REQUIRED>

D.7.1.4.1.6 componentinstantiation

The componentinstantiation element (see Figure D-35) is intended to describe a particular
instantiation of a component relative to a componentplacement element. The
componentinstantiation‘s id attribute is a DCE UUID that uniquely identifier the component.
The id is a DCE UUID value as specified in section D.2.1. The componentinstantiation contains
a usagename element that is intended for an applicable name for the component. The optional
componentproperties element (see Figure D-36) is a list of property values that are used in
configuring the component. D.6.1.3.3 defines the property list for the componentinstantiation
element, which contains initial properties values. For a component service type (e.g,, Log), the
usagename element is not optional and needs to be unique for each service type.

<<DIDEement>>
componeniedandaion
¢ud:-D

<<DSepenvceGmp>>
compreniinaieniaion pp

D1 D1
0 z// a

<< DNCE lemend” CDATA> > << IDBement>>
LT compnenipropesf es

Figure D-35. componentinstantiation Element Relationships

<!ELEMENT componentinstantiation
(usagename?
, componentproperties?
) >

D-51

SCA version 2.2.2 FINAL /15 May 2006

<!ATTLIST componentinstantiation
id ID #REQUIRED>

<!ELEMENT usagename (#PCDATA)>

<<EDErm et >>
1 i e ey e
i
<TIDCHmiCE Gam o>
o w1y

P e —gom——t o=t

o TIE el MY >0 | <<JIDErm eat>o- «ol:s\ ocJIE e ab>>
et ED PrEAp ETr e e (e T

+1ei - COREA ¢ - COAT oo - DR <M - OO
sale: CODARR

Figure D-36. componentproperties Element Relationships

<!ELEMENT componentproperties
(simpleref | simplesequenceref | structref |
structsequenceref)+ >

<!ELEMENT simpleref EMPTY>
<!ATTLIST simpleref
refid CDATA #REQUIRED
value CDATA #REQUIRED>

<!ELEMENT simplesequenceref
(values)>
<!ATTLIST simplesequenceref
refid CDATA #REQUIRED>

<!ELEMENT structref
(simpleref+)>
<!ATTLIST structref
refid CDATA #REQUIRED>

<!ELEMENT structsequenceref
(structvalue+)>
<!ATTLIST structsequenceref
refid CDATA #REQUIRED>

<!ELEMENT structvalue
(simpleref+)>

D-52

SCA version 2.2.2 FINAL /15 May 2006

<!ELEMENT wvalues
(value+)>

<!ELEMENT value (#PCDATA)>
D.7.1.5 connections

The connections element in the DCD is the same as the connections element in the SAD in
section D.6.1.5. The connections element in the DCD is used to indicate the services (Log,
etc...) instances that are used by the CF DeviceManager and CF Device components in the DCD.
To establish connections to a CF DeviceManager, the DCD’s deviceconfiguration element’s id
attribute value is used for the SAD’s usesport element’s componentinstantiationref element’s
refid attribute value.

D.7.1.6 domainmanager

The domainmanager element (see Figure D-37) indicates how to obtain the CF DomainManager
object reference.

See sections D.6.1.5.1.1.4 for description of the namingservice

<=DTDElement==
|_domammanager |

v

<<DTDElementEMPTY >

cname - CDATA

Figure D-37. domainmanager Element Relationships

<!ELEMENT domainmanager
(namingservice)>

<!ELEMENT namingservice EMPTY>
<!ATTLIST namingservice
name CDATA #REQUIRED>

D.7.1.7 filesystemnames

The optional filesystemnames element indicates the mounted file system names for CF
DeviceManager's FileManager.

D-53

SCA version 2.2.2 FINAL /15 May 2006

The optional filesystemnames element indicates the names for file systems mounted within a CF
DeviceManager's FileManager. The mountname attribute contains a file system name that
uniquely identifies a mount point. The deviceid attribute is the unique identifier (UUID) for a
specific component, within the DCD, which represents the device hosting this file system. The
use of the deviceid attribute value is implementation dependent.

<!ELEMENT filesystemnames
(filesystemname+) >

<!ELEMENT filesystemname EMPTY>
<!ATTLIST filesystemname
mountname CDATA #REQUIRED
deviceid CDATA #REQUIRED>

D.8 DOMAINMANAGER CONFIGURATION DESCRIPTOR

This section describes the XML elements of the DomainManager Configuration Descriptor
(DMD) XML file; the domainmanagerconfiguration element (see Figure D-38).

D.8.1 domainmanagerconfiguration

The domainmanagerconfiguration element id attribute is a DCE UUID that uniquely identifies
the DomainManager. The id is a DCE UUID value as specified in section D.2.1.

<< DIDEement>>
domanmenagerconipprsad on
«ud:-D
<mame - CDATA

|

<< DDSepenceGmup>>
m@lﬁm_ﬂ
rescani

o 2 o\ a

<<ﬂ[&lum> <<NDEement>> <<NDEement>>
dewcemanapesariiphy SETeCEs

Figure D-38. domainmanagerconfiguration Element Relationships

<!ELEMENT domainmanagerconfiguration
(description?
, domainmanagersoftpkg
, services
) >

<!ATTLIST domainmanagerconfiguration
id ID frequired
name #CDATA #frequired>

D-54

SCA version 2.2.2 FINAL /15 May 2006

D.8.1.1 description

The optional description element of the DMD may be used to provide information about the
configuration.

<!ELEMENT description (#PCDATA)>
D.8.1.2 domainmanagersoftpkg

The domainmanagersoftpkg element refers to the SPD for the CF DomainManager. The SPD
file is referenced by a localfile element. This SPD can be used to describe the CF
DomainManager implementation and to specify the usesports for the services (Log(s), etc...)
used by the CF DomainManager. See section D.2.1.4.1 for description of the localfile element.

<!ELEMENT domainmanagersoftpkg
(localfile) >

D.8.1.3 services

The services element in the DMD is used by the CF DomainManager to determine which service
(Log, etc.) instances to use; it makes use of the service element (see Figure D-39). See section
D.6.1.5.1.1.3 for a description of the findby element. See section D.6.1.5.1.1.1 for a description
of the usesidentifier element.

<!ELEMENT services
(service+) >

<<DTDElement>>
senice

v

<<DTDSequenceGroup>>
senice_grp
(from service)

! / @

<<DTDElementPCDATA>> <<DTDElement>>
usesidentifier findby

Figure D-39. service Element Relationships
<!ELEMENT service

(usesidentifier
, findby) >

D-55

SCA version 2.2.2 FINAL /15 May 2006

D.9 PROFILE DESCRIPTOR

The profile element is used to specify an absolute file pathname relative to a mounted CF
FileSystem. The filename attribute is the absolute pathname relative to a mounted FileSystem.
This filename can also be used to access any other local file elements in the profile. The type
attribute indicates the type of profile being referenced. The valid type attribute values are
“SAD”, “SPD”, “DCD”, and “DMD”. This element is used as the parameter for interface profile
attributes (e.g., CF Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF
DomainManager).

<!ELEMENT profile EMPTY>

<!ATTLIST profile
filename CDATA #REQUIRED
type CDATA #TMPLIED>

D.10 DOCUMENT TYPE DEFINITIONS
Attachment 1 to Appendix D contains the complete DTDs for the Domain Profile.

D-56

	Software Communications Architecture Specification
	Appendix D: Domain Profile
	Revision Summary
	Table of Contents
	List of Figures
	Appendix D. Domain Profile
	D.1 Deployment Overview
	D.2 Software Package Descriptor
	D.2.1 Software Package
	D.2.1.1 title
	D.2.1.2 author
	D.2.1.3 description
	D.2.1.4 propertyfile
	D.2.1.4.1 localfile

	D.2.1.5 descriptor
	D.2.1.6 implementation
	D.2.1.6.1 propertyfile
	D.2.1.6.2 description
	D.2.1.6.3 code
	D.2.1.6.4 compiler
	D.2.1.6.5 programminglanguage
	D.2.1.6.6 humanlanguage
	D.2.1.6.7 os
	D.2.1.6.8 processor
	D.2.1.6.9 dependency
	D.2.1.6.9.1 softpkgref
	D.2.1.6.9.2 propertyref

	D.2.1.6.10 runtime

	D.2.1.7 usesdevice
	D.2.1.7.1 propertyref

	D.3 Device Package Descriptor
	D.3.1 Device Package
	D.3.1.1 title
	D.3.1.2 author
	D.3.1.3 description
	D.3.1.4 hwdeviceregistration
	D.3.1.4.1 propertyfile
	D.3.1.4.2 description
	D.3.1.4.3 manufacturer
	D.3.1.4.4 modelnumber
	D.3.1.4.5 deviceclass
	D.3.1.4.6 childhwdevice
	D.3.1.4.7 hwdeviceregistration
	D.3.1.4.8 devicepkgref

	D.4 Properties Descriptor
	D.4.1 properties
	D.4.1.1 simple
	D.4.1.1.1 description
	D.4.1.1.2 value
	D.4.1.1.3 units
	D.4.1.1.4 range
	D.4.1.1.5 enumerations
	D.4.1.1.6 kind
	D.4.1.1.7 action

	D.4.1.2 simplesequence
	D.4.1.3 test
	D.4.1.3.1 inputvalue
	D.4.1.3.2 resultvalue

	D.4.1.4 struct
	D.4.1.4.1 configurationkind

	D.4.1.5 structsequence

	D.5 Software Component Descriptor
	D.5.1 softwarecomponent
	D.5.1.1 corbaversion
	D.5.1.2 componentrepid
	D.5.1.3 componenttype
	D.5.1.4 componentfeatures
	D.5.1.4.1 supportsinterface
	D.5.1.4.2 ports

	D.5.1.5 interfaces
	D.5.1.6 propertyfile

	D.6 Software Assembly Descriptor
	D.6.1 softwareassembly
	D.6.1.1 description
	D.6.1.2 componentfiles
	D.6.1.2.1 componentfile

	D.6.1.3 partitioning
	D.6.1.3.1 componentplacement
	D.6.1.3.2 componentfileref
	D.6.1.3.3 componentinstantiation
	D.6.1.3.4 hostcollocation
	D.6.1.3.4.1 componentplacement

	D.6.1.4 assemblycontroller
	D.6.1.5 connections
	D.6.1.5.1 connectinterface
	D.6.1.5.1.1 usesport
	D.6.1.5.1.1.1 usesidentifier
	D.6.1.5.1.1.2 componentinstantiationref
	D.6.1.5.1.1.3 findby
	D.6.1.5.1.1.4 namingservice
	D.6.1.5.1.1.5 domainfinder
	D.6.1.5.1.1.6 devicethatloadedthiscomponentref
	D.6.1.5.1.1.7 deviceusedbythiscomponentref

	D.6.1.5.1.2 providesport
	D.6.1.5.1.2.1 providesidentifier
	D.6.1.5.1.2.2 componentinstantiationref
	D.6.1.5.1.2.3 findby.
	D.6.1.5.1.2.4 devicethatloadedthiscomponentref.
	D.6.1.5.1.2.5 deviceusedbythiscomponentref.

	D.6.1.5.1.3 componentsupportedinterface
	D.6.1.5.1.3.1 supportedidentifier
	D.6.1.5.1.3.2 componentinstantiationref.
	D.6.1.5.1.3.3 findby.

	D.6.1.6 externalports

	D.7 Device Configuration Descriptor
	D.7.1 deviceconfiguration
	D.7.1.1 description
	D.7.1.2 devicemanagersoftpkg
	D.7.1.3 componentfiles
	D.7.1.4 partitioning
	D.7.1.4.1 componentplacement
	D.7.1.4.1.1 componentfileref
	D.7.1.4.1.2 deployondevice
	D.7.1.4.1.3 devicepkgfile
	D.7.1.4.1.4 localfile
	D.7.1.4.1.5 compositepartofdevice
	D.7.1.4.1.6 componentinstantiation

	D.7.1.5 connections
	D.7.1.6 domainmanager
	D.7.1.7 filesystemnames

	D.8 DomainManager Configuration Descriptor
	D.8.1 domainmanagerconfiguration
	D.8.1.1 description
	D.8.1.2 domainmanagersoftpkg
	D.8.1.3 services

	D.9 Profile Descriptor
	D.10 Document Type Definitions

