
UNCLASSIFIED

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

APPENDIX C: CORE FRAMEWORK IDL

FINAL / 15 May 2006

Version 2.2.2

Prepared by:

JTRS Standards

Joint Program Executive Office (JPEO) Joint Tactical Radio System (JTRS)

Space and Naval Warfare Systems Center San Diego

53560 Hull Street, San Diego CA 92152-5001

Distribution Statement A - Approved for public release; distribution is unlimited (15 May 2006)

SCA version 2.2.2 FINAL / 15 May 2006

 C-ii

REVISION SUMMARY

Version Revision

1.0 Initial Release

1.1 Updated IDL to reflect SCAS changes made for v1.1; updated comments.

2.0
Incorporate approved Change Proposals, numbers 175, 245, 277, 278, 282, 311, 336,

345.

2.1
Incorporate approved Change Proposals, numbers 142, 175, 245, 277, 278, 282, 306,

311, 336, 345, 360.

2.2 Incorporate approved Change Proposals, numbers 138, 496, 509

2.2.1 Incorporate approved Change Proposals, numbers 15, 77, 26, 44, 45, 70, 74, 101, 102

2.2.2

Updated IDL

Reduced comment text

Incorporated Change Proposals SCA-CCM 44, 178, 202, and 210

SCA version 2.2.2 FINAL / 15 May 2006

 C-iii

TABLE OF CONTENTS

APPENDIX C CORE FRAMEWORK IDL .. C-1

C.1 Core Framework IDL ... C-1

C.2 PortTypes Module. .. C-35

C.3 StandardEvent Module. ... C-36

SCA version 2.2.2 FINAL / 15 May 2006

 C-1

APPENDIX C CORE FRAMEWORK IDL

The CF interfaces are expressed in CORBA IDL. Any IDL compiler for the target language of

choice may compile the generated IDL.

The CF interfaces are contained in the CF CORBA module. Additionally, IDL modules are

provided for interfaces that extend the Port interface by defining basic data sequence types. The

StandardEvent CORBA Module contains the standard event types to be passed via the event

service.

Attachment 1 to this appendix contains this same IDL.

C.1 CORE FRAMEWORK IDL

CF
ApplicationFactory

Applcation

DeviceManager

DomainManager

File

FileManager

FileSystem

LifeCycle

Port

PropertySet

Resource

ResourceFactory

PortSupplier

Device

LoadableDevice

AggregateDevice

ExecutableDevice

Figure C-1: CF CORBA Module

//Source file: CF.idl

#ifndef __CF_DEFINED

#define __CF_DEFINED

module CF {

 interface Device;

 interface File;

 interface Resource;

 interface Application;

 interface ApplicationFactory;

 interface DeviceManager;

 /* This type is a CORBA IDL struct type which can be used

to hold any CORBA basic type or static IDL type. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-2

 struct DataType {

 /* The id attribute indicates the kind of value and

type. The id can be an UUID string, an integer string, or a name

identifier. */

 string id;

 /* The value attribute can be any static IDL type or

CORBA basic type. */

 any value;

 };

 /* This exception indicates an invalid component profile

error. */

 exception InvalidProfile {

 };

 /* The Properties is a CORBA IDL unbounded sequence of CF

DataType(s), which can be used in defining a sequence of name and

value pairs. */

 typedef sequence <DataType> Properties;

 /* This exception indicates an invalid CORBA object

reference error. */

 exception InvalidObjectReference {

 string msg;

 };

 /* This type is a CORBA unbounded sequence of octets. */

 typedef sequence <octet> OctetSequence;

 /* This type defines a sequence of strings */

 typedef sequence <string> StringSequence;

 /* This exception indicates a set of properties unknown by

the component. */

 exception UnknownProperties {

 CF::Properties invalidProperties;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-3

 /* DeviceAssignmentType defines a structure that associates

a component with the device upon which the component is executing

on. */

 struct DeviceAssignmentType {

 string componentId;

 string assignedDeviceId;

 };

 /* The IDL sequence, DeviceAssignmentSequence, provides a

unbounded sequence of 0..n of DeviceAssignmentType. */

 typedef sequence <DeviceAssignmentType>

DeviceAssignmentSequence;

 /* This enum is used to pass error number information in

various exceptions. Those exceptions starting with "CF_E" map to

the POSIX definitions. The "CF_" has been added to the POSIX

exceptions to avoid namespace conflicts. CF_NOTSET is not defined

in the POSIX specification. CF_NOTSET is an SCA specific value

that is applicable for any exception when the method specific or

standard POSIX error values are not appropriate.) */

 enum ErrorNumberType {

 CF_NOTSET,

 CF_E2BIG,

 CF_EACCES,

 CF_EAGAIN,

 CF_EBADF,

 CF_EBADMSG,

 CF_EBUSY,

 CF_ECANCELED,

 CF_ECHILD,

 CF_EDEADLK,

 CF_EDOM,

 CF_EEXIST,

 CF_EFAULT,

 CF_EFBIG,

 CF_EINPROGRESS,

 CF_EINTR,

 CF_EINVAL,

 CF_EIO,

 CF_EISDIR,

 CF_EMFILE,

 CF_EMLINK,

 CF_EMSGSIZE,

SCA version 2.2.2 FINAL / 15 May 2006

 C-4

 CF_ENAMETOOLONG,

 CF_ENFILE,

 CF_ENODEV,

 CF_ENOENT,

 CF_ENOEXEC,

 CF_ENOLCK,

 CF_ENOMEM,

 CF_ENOSPC,

 CF_ENOSYS,

 CF_ENOTDIR,

 CF_ENOTEMPTY,

 CF_ENOTSUP,

 CF_ENOTTY,

 CF_ENXIO,

 CF_EPERM,

 CF_EPIPE,

 CF_ERANGE,

 CF_EROFS,

 CF_ESPIPE,

 CF_ESRCH,

 CF_ETIMEDOUT,

 CF_EXDEV

 };

 /* The InvalidFileName exception indicates an invalid file

name was passed to a file service operation. The message provides

information describing why the filename was invalid. */

 exception InvalidFileName {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The CF FileException indicates a file-related error

occurred. The message provides information describing the error.

*/

 exception FileException {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This type defines an unbounded sequence of Devices. */

 typedef sequence <Device> DeviceSequence;

SCA version 2.2.2 FINAL / 15 May 2006

 C-5

 /* The AggregateDevice interface provides aggregate behavior

that can be used to add and remove Devices from a parent device.

This interface can be provided via inheritance or as a "provides

port". Child devices use this interface to add or remove

themselves from parent device when being created or torn-down. */

 interface AggregateDevice {

 /* The readonly devices attribute contains a list of

devices that have been added to this device or a sequence length

of zero if the device has no aggregation relationships with other

devices. */

 readonly attribute CF::DeviceSequence devices;

 /* The addDevice operation provides the mechanism to

associate a device with another device. */

 void addDevice (

 in CF::Device associatedDevice

)

 raises (CF::InvalidObjectReference);

 /* The removeDevice operation provides the mechanism to

disassociate

 a device from another device. */

 void removeDevice (

 in CF::Device associatedDevice

)

 raises (CF::InvalidObjectReference);

 };

 /* The FileSystem interface defines the CORBA operations to

enable remote access to a physical file system. */

 interface FileSystem {

 /* This exception indicates a set of properties unknown

by the FileSystem object. */

 exception UnknownFileSystemProperties {

 CF::Properties invalidProperties;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-6

 /* This constant indicates file system size. */

 const string SIZE = "SIZE";

 /* This constant indicates the available space on the

file system. */

 const string AVAILABLE_SPACE = "AVAILABLE_SPACE";

 /* The FileType indicates the type of file entry. A file

system can have PLAIN or DIRECTORY files and mounted file systems

contained in a FileSystem. */

 enum FileType {

 PLAIN,

 DIRECTORY,

 FILE_SYSTEM

 };

 /* The FileInformationType indicates the information

returned for a file. */

 struct FileInformationType {

 string name;

 CF::FileSystem::FileType kind;

 unsigned long long size;

 CF::Properties fileProperties;

 };

 typedef sequence <FileInformationType>

FileInformationSequence;

 /* The CREATED_TIME_ID is the identifier for the created

time file property. */

 const string CREATED_TIME_ID = "CREATED_TIME";

 /* The MODIFIED_TIME_ID is the identifier for the

modified time file property. */

 const string MODIFIED_TIME_ID = "MODIFIED_TIME";

 /* The LAST_ACCESS_TIME_ID is the identifier for the

last access time file property. */

 const string LAST_ACCESS_TIME_ID = "LAST_ACCESS_TIME";

 /* The remove operation removes the file with the given

filename. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-7

 void remove (

 in string fileName

)

 raises (CF::FileException,CF::InvalidFileName);

 /* The copy operation copies the source file with the

specified sourceFileName to the destination file with the

specified destinationFileName. */

 void copy (

 in string sourceFileName,

 in string destinationFileName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The exists operation checks to see if a file exists

based on the filename parameter. */

 boolean exists (

 in string fileName

)

 raises (CF::InvalidFileName);

 /* The list operation provides the ability to obtain a

list of files along with their information in the file system

according to a given search pattern. */

 CF::FileSystem::FileInformationSequence list (

 in string pattern

)

 raises (CF::FileException,CF::InvalidFileName);

 /* The create operation creates a new File based upon

the provided file name and returns a File to the opened file. */

 CF::File create (

 in string fileName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The open operation opens a file for reading or

writing based upon the input fileName. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-8

 CF::File open (

 in string fileName,

 in boolean read_Only

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The mkdir operation creates a file system directory

based on the directoryName given. */

 void mkdir (

 in string directoryName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The rmdir operation removes a file system directory

based on the directoryName given. */

 void rmdir (

 in string directoryName

)

 raises (CF::InvalidFileName,CF::FileException);

 /* The query operation returns file system information

to the calling client based upon the given fileSystemProperties'

ID. */

 void query (

 inout CF::Properties fileSystemProperties

)

 raises (CF::FileSystem::UnknownFileSystemProperties);

 };

 /* The File interface provides the ability to read and write

files residing within a distributed FileSystem. A file can be

thought of conceptually as a sequence of octets with a current

filePointer describing where the next read or write will occur. */

 interface File {

 /* The IOException exception indicates an error occurred

during a read or write operation to a File. The message is

component-dependent, providing additional information describing

the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-9

 exception IOException {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates the file pointer is out of

range based upon the current file size. */

 exception InvalidFilePointer {

 };

 /* The readonly fileName attribute contains the file

name given to the FileSystem open/create operation. */

 readonly attribute string fileName;

 /* The readonly filePointer attribute contains the file

position where the next read or write will occur. */

 readonly attribute unsigned long filePointer;

 /* Applications require the read operation in order to

retrieve data from remote files. */

 void read (

 out CF::OctetSequence data,

 in unsigned long length

)

 raises (CF::File::IOException);

 /* The write operation writes data to the file

referenced. */

 void write (

 in CF::OctetSequence data

)

 raises (CF::File::IOException);

 /* The sizeOf operation returns the current size of the

file. */

 unsigned long sizeOf ()

 raises (CF::FileException);

 /* The close operation releases any OE file resources

associated with the component. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-10

 void close ()

 raises (CF::FileException);

 /* The setFilePointer operation positions the file

pointer where next read or write will occur. */

 void setFilePointer (

 in unsigned long filePointer

)

 raises

(CF::File::InvalidFilePointer,CF::FileException);

 };

 /* A ResourceFactory can be used to create and tear down a

Resource. */

 interface ResourceFactory {

 /* This exception indicates the resourceID does not

exist in the ResourceFactory. */

 exception InvalidResourceId {

 };

 /* This exception indicates that the shutdown method

failed to release the ResourceFactory from the CORBA environment

because the Factory still contains Resources. The message is

component-dependent, providing additional information describing

why the shutdown failed. */

 exception ShutdownFailure {

 string msg;

 };

 /* The CreateResourceFailure exception indicates that

the createResource operation failed to create the Resource. The

message is component-dependent, providing additional

information describing the reason for the error. */

 exception CreateResourceFailure {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-11

 /* The readonly identifier attribute contains the unique

identifier for a ResourceFactory instance. */

 readonly attribute string identifier;

 /* The createResource operation provides the capability

to create Resources in the same process space as the

ResourceFactory or to return a Resource that has already been

created. This behavior is an alternative approach to the Device's

execute operation for creating a Resource. */

 CF::Resource createResource (

 in string resourceId,

 in CF::Properties qualifiers

)

 raises (CF::ResourceFactory::CreateResourceFailure);

 /* In CORBA there is client side and server side

representation of a Resource. This operation provides the

mechanism of releasing the Resource in the CORBA environment on

the server side when all clients are through with a specific

Resource. The client still has to release its client side

reference of the Resource. */

 void releaseResource (

 in string resourceId

)

 raises (CF::ResourceFactory::InvalidResourceId);

 /* In CORBA there is client side and server side

representation of a ResourceFactory. This operation provides the

mechanism for releasing the ResourceFactory from the CORBA

environment on the server side. The client has the responsibility

to release its client side reference of the ResourceFactory. */

 void shutdown ()

 raises (CF::ResourceFactory::ShutdownFailure);

 };

 /* Multiple, distributed FileSystems may be accessed through

a FileManager. The FileManager interface appears to be a single

FileSystem although the actual file storage may span multiple

physical file systems. */

 interface FileManager : FileSystem {

SCA version 2.2.2 FINAL / 15 May 2006

 C-12

 /* The Mount structure identifies the FileSystems

mounted within the FileManager. */

 struct MountType {

 string mountPoint;

 CF::FileSystem fs;

 };

 /* This type defines an unbounded sequence of mounted

FileSystems. */

 typedef sequence <MountType> MountSequence;

 /* This exception indicates a mount point does not exist

within the FileManager */

 exception NonExistentMount {

 };

 /* This exception indicates the FileSystem is a null

(nil) object reference. */

 exception InvalidFileSystem {

 };

 /* This exception indicates the mount point is already

in use in the FileManager. */

 exception MountPointAlreadyExists {

 };

 /* The mount operation associates a FileSystem with a

mount point (a directory name). */

 void mount (

 in string mountPoint,

 in CF::FileSystem file_System

)

 raises

(CF::InvalidFileName,CF::FileManager::InvalidFileSystem,CF::FileMa

nager::MountPointAlreadyExists);

 /* The unmount operation removes a mounted FileSystem

from the FileManager whose mounted name matches the input

mountPoint name. */

 void unmount (

 in string mountPoint

)

 raises (CF::FileManager::NonExistentMount);

SCA version 2.2.2 FINAL / 15 May 2006

 C-13

 /* The getMounts operation returns the FileManager's

mounted FileSystems. */

 CF::FileManager::MountSequence getMounts ();

 };

 /* This interface provides operations for managing

associations between ports. An application defines a specific

Port type by specifying an interface that inherits the Port

interface. */

 interface Port {

 /* This exception indicates one of the following errors

has occurred in the specification of a Port association. */

 exception InvalidPort {

 unsigned short errorCode;

 string msg;

 };

 /* This exception indicates the Port is unable to accept

any additional connections. */

 exception OccupiedPort {

 };

 /* The connectPort operation makes a connection to the

component identified by the input parameters. The connectPort

operation establishes only half of the association; therefore two

calls are required to create a two-way association. A port may

support several connections. */

 void connectPort (

 in Object connection,

 in string connectionId

)

 raises (CF::Port::InvalidPort,CF::Port::OccupiedPort);

 /* The disconnectPort operation breaks the connection to

the component identified by the input parameters. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-14

 void disconnectPort (

 in string connectionId

)

 raises (CF::Port::InvalidPort);

 };

 /* The LifeCycle interface defines the generic operations

for initializing or releasing instantiated component-specific data

and/or processing elements. */

 interface LifeCycle {

 /* This exception indicates an error occurred during

component initialization. The messages provide additional

information describing the reason why the error occurred. */

 exception InitializeError {

 CF::StringSequence errorMessages;

 };

 /* This exception indicates an error occurred during

component releaseObject. The messages provide additional

information describing the reason why the error occurred. */

 exception ReleaseError {

 CF::StringSequence errorMessages;

 };

 /* The purpose of the initialize operation is to provide

a mechanism to set an object to an known initial state. */

 void initialize ()

 raises (CF::LifeCycle::InitializeError);

 /* The purpose of the releaseObject operation is to

provide a means by which an instantiated component may be torn

down. */

 void releaseObject ()

 raises (CF::LifeCycle::ReleaseError);

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-15

 /* The TestableObject interface defines a set of operations

that can be used to test component implementations. */

 interface TestableObject {

 /* This exception indicates the requested testid for a

test to be performed is not known by the component. */

 exception UnknownTest {

 };

 /* The runTest operation allows components to be

"blackbox" tested. This allows Built-In Tests to be implemented

which provides a means to isolate faults (both software and

hardware) within the system. */

 void runTest (

 in unsigned long testid,

 inout CF::Properties testValues

)

 raises

(CF::TestableObject::UnknownTest,CF::UnknownProperties);

 };

 /* The PropertySet interface defines configure and query

operations to access component properties/attributes. */

 interface PropertySet {

 /* This exception indicates the configuration of a

component has failed (no configuration at all was done). The

message provides additional information describing the reason why

the error occurred. The invalid properties returned indicates the

properties that were invalid. */

 exception InvalidConfiguration {

 string msg;

 CF::Properties invalidProperties;

 };

 /* The PartialConfiguration exception indicates the

configuration of a Component was partially successful. The invalid

properties returned indicates the properties that were invalid.

*/

SCA version 2.2.2 FINAL / 15 May 2006

 C-16

 exception PartialConfiguration {

 CF::Properties invalidProperties;

 };

 /* The purpose of this operation is to allow id/value

pair configuration properties to be assigned to components

implementing this interface. */

 void configure (

 in CF::Properties configProperties

)

 raises

(CF::PropertySet::InvalidConfiguration,CF::PropertySet::PartialCon

figuration);

 /* The purpose of this operation is to allow a component

to be queried to retrieve its properties. */

 void query (

 inout CF::Properties configProperties

)

 raises (CF::UnknownProperties);

 };

 /* The DomainManager interface is for the control and

configuration of the radio domain. */

 interface DomainManager : PropertySet {

 /* This exception is raised when an Application

installation has not completed correctly. The message provides

additional information describing the reason for the error. */

 exception ApplicationInstallationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 exception ApplicationAlreadyInstalled {

 };

 /* This type defines an unbounded sequence of

Applications. */

 typedef sequence <Application> ApplicationSequence;

SCA version 2.2.2 FINAL / 15 May 2006

 C-17

 /* This type defines an unbounded sequence of

ApplicationFactories. */

 typedef sequence <ApplicationFactory>

ApplicationFactorySequence;

 /* This type defines an unbounded sequence of

DeviceManagers. */

 typedef sequence <DeviceManager> DeviceManagerSequence;

 /* This exception indicates the application ID is

invalid. */

 exception InvalidIdentifier {

 };

 /* This exception indicates the registering Device's

DeviceManager is not registered in the DomainManager. A Device's

DeviceManager has to be registered prior to a Device registration

to the DomainManager. */

 exception DeviceManagerNotRegistered {

 };

 /* This exception is raised when an Application

uninstallation has not completed correctly. The message provides

additional information describing the reason for the error. */

 exception ApplicationUninstallationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that an internal error has

occurred to prevent DomainManager registration operations from

successful completion. The message provides additional information

describing the reason for the error. */

 exception RegisterError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that an internal error has

occurred to prevent DomainManager unregister operations from

successful completion. The message provides additional information

describing the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-18

 exception UnregisterError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that a registering consumer

is already connected to the specified event channel. */

 exception AlreadyConnected {

 };

 /* This exception indicates that a DomainManager was not

able to locate the event channel. */

 exception InvalidEventChannelName {

 };

 /* The NotConnected exception indicates that the

unregistering consumer was not connected to the specified event

channel. */

 exception NotConnected {

 };

 /* The readonly domainManagerProfile attribute contains

a profile element with a file reference to the DomainManager

Configuration Descriptor (DMD) profile. */

 readonly attribute string domainManagerProfile;

 /* The deviceManagers attribute is read-only containing

a sequence of registered DeviceManagers in the domain. */

 readonly attribute

CF::DomainManager::DeviceManagerSequence deviceManagers;

 /* The applications attribute contains a list of

Applications that have been instantiated in the domain. */

 readonly attribute CF::DomainManager::ApplicationSequence

applications;

 /* The readonly applicationFactories attribute contains

a list with one ApplicationFactory per application (SAD file and

associated files) successfully installed. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-19

 readonly attribute

CF::DomainManager::ApplicationFactorySequence

 applicationFactories;

 /* The readonly fileMgr attribute contains the

DomainManager's FileManager. */

 readonly attribute CF::FileManager fileMgr;

 /* The readonly identifier attribute contains a unique

identifier for a DomainManager instance. The identifier is

identical to the domainmanagerconfiguration element id attribute

of the DomainManager's Descriptor (DMD) file. */

 readonly attribute string identifier;

 /* The registerDevice operation is used to register a

Device for a specific DeviceManager in the DomainManager's Domain

Profile. */

 void registerDevice (

 in CF::Device registeringDevice,

 in CF::DeviceManager registeredDeviceMgr

)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

 CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

 /* The registerDeviceManager operation is used to

register a DeviceManager, its Device(s), and its Services. */

 void registerDeviceManager (

 in CF::DeviceManager deviceMgr

)

 raises (CF::InvalidObjectReference,CF::InvalidProfile,

 CF::DomainManager::RegisterError);

 /* The unregisterDeviceManager operation is used to

unregister a DeviceManager component from the DomainManager's

Domain Profile. A DeviceManager may be unregistered during run-

time for dynamic extraction or maintenance of the DeviceManager.

*/

SCA version 2.2.2 FINAL / 15 May 2006

 C-20

 void unregisterDeviceManager (

 in CF::DeviceManager deviceMgr

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The unregisterDevice operation is used to remove a

device entry from the DomainManager for a specific DeviceManager.

*/

 void unregisterDevice (

 in CF::Device unregisteringDevice

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The installApplication operation is used to register

new application software in the DomainManager's Domain Profile. */

 void installApplication (

 in string profileFileName

)

 raises (CF::InvalidProfile,CF::InvalidFileName,

 CF::DomainManager::ApplicationInstallationError,

 CF::DomainManager:: ApplicationAlreadyInstalled);

 /* The uninstallApplication operation is used to

uninstall an application and its associated ApplicationFactory

from the DomainManager. */

 void uninstallApplication (

 in string applicationId

)

 raises (CF::DomainManager::InvalidIdentifier,

 CF::DomainManager::ApplicationUninstallationError);

 /* The registerService operation is used to register a

service for a specific DeviceManager with the DomainManager. */

 void registerService (

 in Object registeringService,

 in CF::DeviceManager registeredDeviceMgr,

 in string name

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::DeviceManagerNotRegistered,

 CF::DomainManager::RegisterError);

SCA version 2.2.2 FINAL / 15 May 2006

 C-21

 /* The unregisterService operation is used to remove a

service entry from the DomainManager for a specific DeviceManager.

*/

 void unregisterService (

 in Object unregisteringService,

 in string name

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::UnregisterError);

 /* The registerWithEventChannel operation is used to

connect a consumer to a domain's event channel. */

 void registerWithEventChannel (

 in Object registeringObject,

 in string registeringId,

 in string eventChannelName

)

 raises (CF::InvalidObjectReference,

 CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::AlreadyConnected);

 /* The unregisterFromEventChannel operation is used to

disconnect a consumer from a domain's event channel. */

 void unregisterFromEventChannel (

 in string unregisteringId,

 in string eventChannelName

)

 raises (CF::DomainManager::InvalidEventChannelName,

 CF::DomainManager::NotConnected);

 };

 /* The ApplicationFactory interface class provides an

interface to request the creation of a specific type of

Application in the domain.The Software Profile determines the type

of Application that is created by the ApplicationFactory. */

 interface ApplicationFactory {

 /* This exception is raised when the parameter

DeviceAssignmentSequence contains one or more invalid Application

component-to-device assignment(s). */

SCA version 2.2.2 FINAL / 15 May 2006

 C-22

 exception CreateApplicationRequestError {

 CF::DeviceAssignmentSequence invalidAssignments;

 };

 /* This exception is raised when a create request is

valid but the Application is unsuccessfully instantiated due to

internal processing errors. The message provides additional

information describing the reason for the error. */

 exception CreateApplicationError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception is raised when the input

initConfiguration parameter is invalid. */

 exception InvalidInitConfiguration {

 CF::Properties invalidProperties;

 };

 /* The name attribute contains the name of the type of

Application that can be instantiated by the ApplicationFactory. */

 readonly attribute string name;

 /* The readonly identifier attribute contains the unique

identifier for an ApplicationFactory instance. The identifier is

identical to the softwareassembly element id attribute of the

ApplicationFactory's Software Assembly Descriptor file. */

 readonly attribute string identifier;

 /* This attribute contains the application software

profile that the factory uses when creating an application. The

string value contains a profile element with a file reference to

the SAD */

 readonly attribute string softwareProfile;

 /* The create operation is used to create an Application

within the system domain. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-23

 CF::Application create (

 in string name,

 in CF::Properties initConfiguration,

 in CF::DeviceAssignmentSequence deviceAssignments

)

 raises

(CF::ApplicationFactory::CreateApplicationError,

 CF::ApplicationFactory::CreateApplicationRequestError,

 CF::ApplicationFactory::InvalidInitConfiguration);

 };

 /* The PortSupplier interface provides the getPort operation

for those objects that provide ports. */

 interface PortSupplier {

 /* This exception is raised if an undefined port is

requested. */

 exception UnknownPort {

 };

 /* The getPort operation provides a mechanism to obtain

a specific consumer or producer Port. A PortSupplier may contain

zero-to-many consumer and producer port components. */

 Object getPort (

 in string name

)

 raises (CF::PortSupplier::UnknownPort);

 };

 /* The Resource interface provides a common interface for

the control and configuration of a software component. */

 interface Resource : LifeCycle, TestableObject, PropertySet,

PortSupplier {

 /* This exception indicates that an error occurred

during an attempt to start the Resource. The message provides

additional information describing the reason for the error. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-24

 exception StartError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The StopError exception indicates that an error

occurred during an attempt to stop the Resource. The message

provides additional information describing the reason for the

error. */

 exception StopError {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The readonly identifier attribute shall contain the

unique identifier for a resource instance. */

 readonly attribute string identifier;

 /* The start operation is provided to command a Resource

implementing this interface to start internal processing. */

 void start ()

 raises (CF::Resource::StartError);

 /* The stop operation is provided to command a Resource

implementing this interface to stop all internal processing. */

 void stop ()

 raises (CF::Resource::StopError);

 };

 /* The Device interface defines additional capabilities and

attributes for any logical Device in the domain. */

 interface Device : Resource {

 /* This exception indicates that the device is not

capable of the behavior being attempted due to the state the

Device is in. */

 exception InvalidState {

 string msg;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-25

 /* The InvalidCapacity exception returns the capacities

that are not valid for this device. */

 exception InvalidCapacity {

 /* The message indicates the reason for the invalid

capacity. */

 string msg;

 /* The invalid capacities sent to the

allocateCapacity operation.*/

 CF::Properties capacities;

 };

 /* This enumeration type defines a Device's

administrative states. The administrative state indicates the

permission to use or prohibition against using the Device. */

 enum AdminType {

 LOCKED,

 SHUTTING_DOWN,

 UNLOCKED

 };

 /* This enumeration type defines a Device's operational

states. The operational state indicates whether or not the object

is functioning. */

 enum OperationalType {

 ENABLED,

 DISABLED

 };

 /* This enumeration type defines the Device's usage

states. */

 enum UsageType {

 IDLE,

 ACTIVE,

 BUSY

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-26

 /* The readonly usageState attribute contains the

Device's usage state The usageState indicates whether or not a

device is actively in use at a specific instant, and if so,

whether or not it has spare capacity for allocation at that

instant. */

 readonly attribute CF::Device::UsageType usageState;

 /* The administrative state indicates the permission to

use or prohibition against using the device. The adminState

attribute contains the device's admin state value. */

 attribute CF::Device::AdminType adminState;

 /* The operationalState attribute contains the device's

operational state. The operational state indicates whether or not

the device is functioning. */

 readonly attribute CF::Device::OperationalType

operationalState;

 /* The softwareProfile attribute is the XML description

for this logical Device. The softwareProfile attribute contains a

profile DTD element with a file reference to the SPD profile file.

*/

 readonly attribute string softwareProfile;

 /* The label attribute is the meaningful name given to a

Device. */

 readonly attribute string label;

 /* The compositeDevice attribute contains the object

reference of the AggregateDevice with which this Device is

associated or a nil CORBA object reference if no association

exists. */

 readonly attribute CF::AggregateDevice compositeDevice;

 /* The allocateCapacity operation provides the mechanism

to request and allocate capacity from the Device. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-27

 boolean allocateCapacity (

 in CF::Properties capacities

)

 raises (CF::Device::InvalidCapacity,

CF::Device::InvalidState);

 /* The deallocateCapacity operation provides the

mechanism to return capacities back to the Device, making them

available to other users. */

 void deallocateCapacity (

 in CF::Properties capacities

)

 raises (CF::Device::InvalidCapacity,

CF::Device::InvalidState);

 };

 /* The Application interface provides for the control,

configuration, and status of an instantiated application in the

domain. */

 interface Application : Resource {

 /* The ComponentProcessIdType defines a type for

associating a component with its process ID. This type can be

used to retrieve a process ID for a specific component. */

 struct ComponentProcessIdType {

 string componentId;

 unsigned long processId;

 };

 /* The ComponentProcessIdSequence type defines an

unbounded sequence of components' process IDs. */

 typedef sequence <ComponentProcessIdType>

ComponentProcessIdSequence;

 /* The ComponentElementType defines a type for

associating a component with an element. */

 struct ComponentElementType {

 string componentId;

 string elementId;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-28

 /* This type is an unbounded sequence of

ComponentElementTypes. */

 typedef sequence <ComponentElementType>

ComponentElementSequence;

 /* This attribute contains the list of components'

Naming Service Context within the Application for those components

using CORBA Naming Service. */

 readonly attribute

CF::Application::ComponentElementSequence

 componentNamingContexts;

 /* This attribute contains the list of components'

process IDs within the Application for components that are

executing on a device. */

 readonly attribute

CF::Application::ComponentProcessIdSequence

 componentProcessIds;

 /* The componentDevices attribute shall contain a list

of devices which each component either uses, is loaded on or is

executed on. Each component (componentinstantiation element in the

Application's software profile) is associated with a device. */

 readonly attribute CF::DeviceAssignmentSequence

componentDevices;

 /* This attribute contains the list of components' SPD

implementation IDs within the Application for those components

created. */

 readonly attribute

CF::Application::ComponentElementSequence

 componentImplementations;

 /* This attribute is the XML profile information for the

application. The string value contains a profile element with a

file reference to the SAD. */

 readonly attribute string profile;

SCA version 2.2.2 FINAL / 15 May 2006

 C-29

 /* This name attribute contains the name of the created

Application. The ApplicationFactory interfaces's create operation

name parameter provides the name content. */

 readonly attribute string name;

 };

 /* This interface extends the Device interface by adding

software loading and unloading behavior to a Device. */

 interface LoadableDevice : Device {

 /* This LoadType defines the type of load to be

performed. The load types are in accordance with the code element

within the softpkg element's implementation element. */

 enum LoadType {

 KERNEL_MODULE,

 DRIVER,

 SHARED_LIBRARY,

 EXECUTABLE

 };

 /* The InvalidLoadKind exception indicates that the

Device is unable to load the type of file designated by the

loadKind parameter. */

 exception InvalidLoadKind {

 };

 /* The LoadFail exception indicates that an error

occurred during an attempt to load the device. The message

provides additional information describing the reason for the

error. */

 exception LoadFail {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The load operation provides the mechanism for loading

software on a specific device. The loaded software may be

subsequently executed on the Device, if the Device is an

ExecutableDevice. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-30

 void load (

 in CF::FileSystem fs,

 in string fileName,

 in CF::LoadableDevice::LoadType loadKind

)

 raises (CF::Device::InvalidState,

 CF::LoadableDevice::InvalidLoadKind,

 CF::InvalidFileName, CF::LoadableDevice::LoadFail);

 /* The unload operation provides the mechanism to unload

software that is currently loaded. */

 void unload (

 in string fileName

)

 raises (CF::Device::InvalidState,CF::InvalidFileName);

 };

 /* This interface extends the LoadableDevice interface by

adding execute and terminate behavior to a Device. */

 interface ExecutableDevice : LoadableDevice {

 /* The InvalidProcess exception indicates that a

process, as identified by the processID parameter, does not exist

on this device. The message provides additional information

describing the reason for the error. */

 exception InvalidProcess {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* This exception indicates that a function, as

identified by the input name parameter, hasn't been loaded on this

device. */

 exception InvalidFunction {

 };

 /* This type defines a process number within the system.

The process number is unique to the Processor operating system

that created the process. */

 typedef long ProcessID_Type;

SCA version 2.2.2 FINAL / 15 May 2006

 C-31

 /* The InvalidParameters exception indicates that input

parameters are invalid for the execute operation. Each

parameter's ID and value must be a valid string type. The

invalidParms is a list of invalid parameters specified in the

execute operation. */

 exception InvalidParameters {

 CF::Properties invalidParms;

 };

 /* The InvalidOptions exception indicates the input

options are invalid on the execute operation. The invalidOpts is

a list of invalid options specified in the execute operation. */

 exception InvalidOptions {

 CF::Properties invalidOpts;

 };

 /* The STACK_SIZE_ID is the identifier for the

ExecutableDevice's execute options parameter. */

 const string STACK_SIZE_ID = "STACK_SIZE";

 /* The PRIORITY_ID is the identifier for the

ExecutableDevice's execute options parameters. */

 const string PRIORITY_ID = "PRIORITY";

 /* The ExecuteFail exception indicates that an attempt

to invoke the execute operation on a device failed. The message

provides additional information describing the reason for the

error. */

 exception ExecuteFail {

 CF::ErrorNumberType errorNumber;

 string msg;

 };

 /* The terminate operation provides the mechanism for

terminating the execution of a process/thread on a specific device

that was started up with the execute operation. */

 void terminate (

 in CF::ExecutableDevice::ProcessID_Type processId

)

 raises (CF::ExecutableDevice::InvalidProcess,

 CF::Device::InvalidState);

SCA version 2.2.2 FINAL / 15 May 2006

 C-32

 /* The execute operation provides the mechanism for

starting up and executing a software process/thread on a device.

*/

 CF::ExecutableDevice::ProcessID_Type execute (

 in string name,

 in CF::Properties options,

 in CF::Properties parameters

)

 raises (CF::Device::InvalidState,

 CF::ExecutableDevice::InvalidFunction,

 CF::ExecutableDevice::InvalidParameters,

 CF::ExecutableDevice::InvalidOptions,

 CF::InvalidFileName,

 CF::ExecutableDevice::ExecuteFail);

 };

 /* The DeviceManager interface is used to manage a set of

logical Devices and services. */

 interface DeviceManager : PropertySet, PortSupplier {

 /* This structure provides the object reference and name

of services that have registered with the DeviceManager. */

 struct ServiceType {

 Object serviceObject;

 string serviceName;

 };

 /* This type provides an unbounded sequence of

ServiceType structures for services that have registered with the

DeviceManager. */

 typedef sequence <ServiceType> ServiceSequence;

 /* The deviceConfigurationProfile attribute contains the

DeviceManager's profile, a profile element with a file reference

to the DeviceManager's Device Configuration Descriptor (DCD)

profile. */

 readonly attribute string deviceConfigurationProfile;

SCA version 2.2.2 FINAL / 15 May 2006

 C-33

 /* The fileSys attribute contains the FileSystem

associated with this DeviceManager or a nil CORBA object reference

if no FileSystem is associated with this DeviceManager. */

 readonly attribute CF::FileSystem fileSys;

 /* The identifier attribute contains the instance-unique

identifier for a DeviceManager. The identifier is identical to

the deviceconfiguration element id attribute of the

DeviceManager's Device Configuration Descriptor (DCD) file. */

 readonly attribute string identifier;

 /* The label attribute contains the DeviceManager's

label. The label attribute is the meaningful name given to a

DeviceManager. */

 readonly attribute string label;

 /* The registeredDevices attribute contains a list of

Devices that have registered with this DeviceManager or a sequence

of length zero if no Devices have registered with the

DeviceManager. */

 readonly attribute CF::DeviceSequence registeredDevices;

 /* The registeredServices attribute contains a list of

Services that have registered with this DeviceManager or a

sequence of length zero if no Services have registered with the

DeviceManager. */

 readonly attribute CF::DeviceManager::ServiceSequence

registeredServices;

 /* The registerDevice operation provides the mechanism

to register a Device with a DeviceManager. */

 void registerDevice (

 in CF::Device registeringDevice

)

 raises (CF::InvalidObjectReference);

 /* This operation unregisters a Device from a

DeviceManager. */

SCA version 2.2.2 FINAL / 15 May 2006

 C-34

 void unregisterDevice (

 in CF::Device registeredDevice

)

 raises (CF::InvalidObjectReference);

 /* The shutdown operation provides the mechanism to

terminate a DeviceManager, unregistering it from the

DomainManager. */

 void shutdown ();

 /* The registerService operation provides mechanisms to

register a Service with a DeviceManager and its DomainManager. */

 void registerService (

 in Object registeringService,

 in string name

)

 raises (CF::InvalidObjectReference);

 /* This operation provides mechanisms to unregister a

Service from a DeviceManager and its DomainManager. */

 void unregisterService (

 in Object unregisteringService,

 in string name

)

 raises (CF::InvalidObjectReference);

 /* The getComponentImplementationId operation returns

the SPD implementation ID that the DeviceManager interface used to

create a component. */

 string getComponentImplementationId (

 in string componentInstantiationId

);

 };

};

#endif

SCA version 2.2.2 FINAL / 15 May 2006

 C-35

C.2 PORTTYPES MODULE.

This CORBA Module contains a set of unbundled CORBA sequence types based on CORBA types

not in the CF CORBA Module.

//Source file: PortTypes.idl

#ifndef __PORTTYPES_DEFINED

#define __PORTTYPES_DEFINED

module PortTypes {

 /* This type is a unbounded sequence of booleans. */

 typedef sequence <boolean> BooleanSequence;

 /* This type is a unbounded sequence of characters. */

 typedef sequence <char> CharSequence;

 /* This type is a unbounded sequence of doubles. */

 typedef sequence <double> DoubleSequence;

 /* This type is a unbounded sequence of longlongs. */

 typedef sequence <long long> LongLongSequence;

 /* This type is a unbounded sequence of longs. */

 typedef sequence <long> LongSequence;

 /* This type is a unbounded sequence of shorts. */

 typedef sequence <short> ShortSequence;

 /* This type is a unbounded sequence of unsigned long longs.

*/

 typedef sequence <unsigned long long> UlongLongSequence;

 /* This type is a unbounded sequence of unsigned longs. */

 typedef sequence <unsigned long> UlongSequence;

 /* This type is a unbounded sequence of unsigned shorts. */

 typedef sequence <unsigned short> UshortSequence;

 /* This type is a unbounded sequence of floats. */

 typedef sequence <float> FloatSequence;

};

#endif

SCA version 2.2.2 FINAL / 15 May 2006

 C-36

C.3 STANDARDEVENT MODULE.

The StandardEvent module contains the types necessary for a standard event producer to generate

standard SCA events as depicted in Figure C-2.

ADMINISTRATIVE_STATE_EVENT.

OPERATIONAL_STATE_EVENT

USAGE_STATE_EVENT

«enumeration»

StateChangeCatagoryType

LOCKED

UNLOCKED

SHUTTING_DOWN

ENABLED

DISABLED

IDLE

ACTIVE

BUSY

«enumeration»

StateChangeType

producerId : string(idl)

sourceId : string(idl)

stateChangeCatagory : StateChangeCatagoryType

stateChangeFrom : StateChangeType

stateChangeTo : StateChangeType

«struct»

StateChangeEventType

DEVICE_MANAGER

DEVICE

APPLICATION_FACTORY

APPLICATION

SERVICE

«enumeration»

SourceCategoryType

producerId : string(idl)

sourceId : string(idl)

sourceName : string(idl)

sourceCategory : SourceCategoryType

«struct»

DomainManagementObjectRemovedEventType

producerId : string(idl)

sourceId : string(idl)

sourceName : string(idl)

sourceCategory : SourceCategoryType

sourceIOR : object(idl)

«struct»

DomainManagementObjectAddedEventType

«uses» «uses»

«uses»
«uses»

Figure C-2: StandardEvent Module

//Source file: StandardEvent.idl

#ifndef __STANDARDEVENT_DEFINED

#define __STANDARDEVENT_DEFINED

SCA version 2.2.2 FINAL / 15 May 2006

 C-37

module StandardEvent {

 /* Type StateChangeCategoryType is an enumeration that is

utilized in the StateChangeEventType. It is used to identify the

category of state change that has occurred. */

 enum StateChangeCategoryType {

 ADMINISTRATIVE_STATE_EVENT,

 OPERATIONAL_STATE_EVENT,

 USAGE_STATE_EVENT

 };

 /* Type StateChangeType is an enumeration that is utilized in

the StateChangeEventType. It is used to identify the specific

states of the event source before and after the state change

occurred. */

 enum StateChangeType {

 LOCKED,

 UNLOCKED,

 SHUTTING_DOWN,

 ENABLED,

 DISABLED,

 IDLE,

 ACTIVE,

 BUSY

 };

 /* Type StateChangeEventType is a structure used to indicate

that the state of the event source has changed. The event producer

will send this structure into an event channel on behalf of the

event source. */

 struct StateChangeEventType {

 string producerId;

 string sourceId;

 StandardEvent::StateChangeCategoryType

stateChangeCategory;

 StandardEvent::StateChangeType stateChangeFrom;

 StandardEvent::StateChangeType stateChangeTo;

 };

SCA version 2.2.2 FINAL / 15 May 2006

 C-38

 /* Type SourceCategoryType is an enumeration that is utilized

in the DomainManagementObjectAddedEventType and

DomainManagementObjectRemovedEventType. Is used to identify the

type of object that has been added to or removed from the domain.

*/

 enum SourceCategoryType {

 DEVICE_MANAGER,

 DEVICE,

 APPLICATION_FACTORY,

 APPLICATION,

 SERVICE

 };

 /* Type DomainManagementObjectRemovedEventType is a structure

used to indicate that the event source has been removed from the

domain. The event producer will send this structure into an event

channel on behalf of the event source. */

 struct DomainManagementObjectRemovedEventType {

 string producerId;

 string sourceId;

 string sourceName;

 StandardEvent::SourceCategoryType sourceCategory;

 };

 /* Type DomainManagementObjectAddedEventType is a structure

used to indicate that the event source has been added to the

domain. The event producer will send this structure into an event

channel on behalf of the event source. */

 struct DomainManagementObjectAddedEventType {

 string producerId;

 string sourceId;

 string sourceName;

 StandardEvent::SourceCategoryType sourceCategory;

 Object sourceIOR;

 };

};

#endif

	Software Communications Architecture Specification
	Appendix C: Core Framework IDL
	Revision Summary
	Table of Contents
	Appendix C Core Framework IDL
	C.1 Core Framework IDL
	C.2 PortTypes Module.
	C.3 StandardEvent Module.

